

Limited Groundwater Assessment

Project Ausgrid Underground Cable Project Alexandria to Kingsford

> Prepared for Ausgrid

Date 24/08/2022

Report No 14777-ER-2-2

geotechnical & environmental solutions

Alliance Geotechnical Pty Ltd

Address:

0.0

Phone: Office Email: Web: 8-10 Welder Road Seven Hills, NSW 1800 288 188 info@allgeo.com.au www.allgeo.com.au

Document Control

Revision	Date	Author	Technical Review	Project Manager
0	24/08/2022	Mehran Asadabadi	Thalia Park Ross	M. Asadabadi

Important Information About This Report

Copyright in all and every part of this document belongs to Alliance Geotechnical Pty Ltd ('Alliance'). The document must not be used, sold, transferred, copied or reproduced in whole or in part in any form or manner or in or on any media to any person other than by agreement with Alliance.

This document is produced by Alliance solely for the use and benefit by the named client in accordance with the terms of the engagement between Alliance and the name client. Alliance (and the document Certifier if applicable) does not and shall not assume any liability or responsibility whatsoever to any third party arising out of any use or reliance by any third party on the content of this document.

This report must be reviewed in its entirety and in conjunction with the objectives, scope and terms applicable to Alliance's engagement. The report must not be used for any purpose other than the purpose specified at the time Alliance was engaged to prepare the report.

The findings presented in this report are based on specific data and information made available during the course of this project. To the best of Alliance's knowledge, these findings represent a reasonable interpretation of the general condition of the site at the time of report completion.

No warranties are made as to the information provided in this report. All conclusions and recommendations made in this report are of the professional opinions of personnel involved with the project and while normal checking of the accuracy of data has been conducted, any circumstances outside the scope of this report or which are not made known to personnel and which may impact on those opinions is not the responsibility of Alliance.

Logs, figures, and drawings are generated for this report based on individual Alliance consultant interpretations of nominated data, as well as observations made at the time fieldwork was undertaken.

Data and/or information presented in this report must not be redrawn for its inclusion in other reports, plans or documents, nor should that data and/or information be separated from this report in any way.

Should additional information that may impact on the findings of this report be encountered or site conditions change, Alliance reserves the right to review and amend this report.

TABLE OF CONTENTS

1	Intr	oduction	4
	1.1	Background	.4
	1.2	Objectives	.4
	1.3	Scope of Work	.4
2	Dat	a Quality Objectives	5
2	2.1	Step 1: State the problem	.5
	2.2	Step 2: Identify the decision / goal of the study	.5
2	2.3	Step 3: Identify the information inputs	.5
2	2.4	Step 4: Define the boundaries of the study	.6
2	2.5	Step 5: Develop the analytical approach	.7
	2.5.1	Field Duplicates and Triplicates	.7
	2.5.2	2 Trip Spikes and Trip Blanks	.7
	2.5.3	3 Equipment Rinsate Blanks	.8
	2.5.4	Field Blanks	.8
	2.5.5	5 Analytical Laboratory Quality Assurance and Quality Control	.8
	2.5.6	Data Quality Indicators	.8
	2.5.7	7 If / Then Statements	10
2	2.6	Step 6: Performance and Acceptance Criteria	11
	2.6.′	I If / Then Decisions	11
2	2.7	Step 7: Develop the plan for obtaining data	11
	2.7.′	Sampling Point Densities and Locations	11
	2.7.2	2 Groundwater Sampling Methods	12
	2.7.3	3 Decontamination	12
	2.7.4	Sample Identification, Handling, Storage and Transport	12
	2.7.5	5 Selection of Laboratory	13
	2.7.6	S Scheduling of Laboratory Analysis	13
	2.7.7	7 Analytical Methods, Limits of Reporting and Holding Times	13
3	Fiel	dwork1	5
;	3.1	Groundwater	15
	3.1.1	Installation of Groundwater Monitoring Wells	15
	3.1.2	2 Groundwater Monitoring Event	15
4	Lab	oratory Analysis1	7
5	Dat	a Quality Indicator (DQI) Assessment1	8
6	Res	sults and Discussion1	9
(6.1	Aquatic Ecosystem Protection	19

alliance

-			
7	Re	ferences	20
	6.4	Recreational Waters – Secondary Contact in Freshwater	19
	6.3	Trade Waste	19
	6.2	Irrigation	19

FIGURES

Figure 1 Sampling Point Layout Plan

TABLES

Table LR1Laboratory Analytical Results - GroundwaterTable LR2Laboratory Analytical Results - RPD Calculations

APPENDICES

- APPENDIX A Logs APPENDIX B – Laboratory Documentation APPENDIX C – Data Quality Indicator (DQI) Assessment
- APPENDIX D Calibration Records
- APPENDIX E Field Records (Water)

1 Introduction

1.1 Background

Alliance Geotechnical Pty Ltd (Alliance) was engaged by Ausgrid (the client) to undertake a limited groundwater assessment at sampling point location BH01 located on the road reserve adjacent to 46 Burrows Road, Alexandria NSW (refer **Figure 1**).

1.2 Objectives

The objectives of this project were:

- Installation of one groundwater well at BH01 and subsequent sampling; and
- Factual presentation of the limited groundwater sample test results against ANZG (2018) criteria.

1.3 Scope of Work

The following scope of works was undertaken to address the project objectives:

- Installation of one groundwater monitoring well and subsequent sampling;
- Laboratory analysis of client nominated analytes; and
- Assessment of data and reporting.

2 Data Quality Objectives

2.1 Step 1: State the problem

The reason the project is being undertaken, is set out in **Section 1.1** of this report.

The objective of this project is set out in **Section 1.2** of this report.

The project team and technical support experts identified for the project include the Alliance project director, Alliance project manager, Alliance field staff and Alliance's subcontractors.

The design and undertaking of this project will be constrained by the client's financial and time budgets.

The regulatory authorities associated with this project include NSW EPA, the local planning authority, and SafeWork NSW.

2.2 Step 2: Identify the decision / goal of the study

The decisions that need to be made during this project, to address the project objectives, include:

• Do the detected concentrations of contaminants in groundwater exceed the nominated criteria?

2.3 Step 3: Identify the information inputs

The information inputs required to make the decisions for the project set out in **Section 2.2**, include:

- Data obtained during the intrusive investigation and laboratory analysis;
- Identification of sample media that needs to be collected, as set out in Section 2.7;
- Parameters that will be measured in each relevant sample, as set out in Section 2.7;
- The analytical methods required for client nominated COPCs. These are set out in **Section 2.7** of this report; and
- The site criteria for the media of concern. These criteria are set out in **Table 2.3** and will be adopted based on the proposed land use scenario¹, identified receptors, and site-specific groundwater conditions (where relevant).

¹ The land use scenarios in Section 2.2 of NEPC (2013a) will be considered when adopting human health assessment criteria. The land use scenarios in Section 2.5 of NEPC (2013a) will be considered when adopting ecological assessment criteria.

Exposure Pathway	Land Use Scenario ²	Criteria Reference
Groundwater	Aquatic (freshwater) ³ The creeks proximate to the site are highly disturbed, on the basis that the aquatic ecosystem is measurably degraded and of lower ecological value due to them being surrounded by residential, commercial land use and therefore likely receiving road and stormwater runoff and runoff from intensive commercial activities.	ANZG (2018) 80% to 90% protection values for highly disturbed freshwater systems (https://www.waterquality.gov.au/anz- guidelines/guideline-values/default/water- quality-toxicants/search). For contaminants that bioaccumulate, the protection value (with the exception of 99%) should be increased to the value to that 'one up' from the site-specific disturbance level e.g. a 95% protection value should be adopted for a bioaccumulating contaminant in a highly disturbed system). The laboratory limit of reporting (LOR) has been adopted as the criteria for analytes which do not have a specific criteria.
-	Disposal to wastewater	Sydney Water Industrial customers - Acceptance standards and charging rates for 2020-21 guideline (TWA) For assessment of suitability to dispose of water to wastewater system.
-	Irrigation (Short-term)	ANZECC (2000) Short-term irrigation trigger values outlined in Table 4.2.10
-	Irrigation (domestic spray irrigation)	NZ Ministry for the Environment (2011) - for the assessment of petroleum hydrocarbons in Table 5.7
-	Recreational	ANZECC (2000) Recreational guideline values for secondary contact in Table 5.2.2

Table 2.3 Adopted Tier 1 Site Assessment Screening Criteria

2.4 Step 4: Define the boundaries of the study

The spatial extent of the project will be limited to:

• The boundaries of the site are limited to groundwater at MW1/BH01, as shown in Figure 1; and

² Consideration will be given to soil type, soil texture, soil depth, groundwater depth and appropriate species protection levels.

³ Adopted guidelines values for select metals in freshwater ecosystems should be adjusted to reflect site specific hardness (refer Table 3.4.4 in ANZECC (2000)

 Physical constraints or infrastructure on site or on land adjacent to the site, which prevents safe and reasonable access for project team members and/or typical and readily available equipment used for projects of this nature.

The scale of the decisions required (as set out in **Section 2.2**) will be based on the boundaries of the site set out above.

The vertical and lateral extents of investigation will be limited to groundwater at monitoring well location MW1/BH01.

The time and budget constraints of this project will be as per those set out in the contract (and any subsequent variations to that contract) between the client and Alliance.

The temporal boundaries of the project will include:

- Availability of project team members (including subcontractors and subconsultants) to collect and assess relevant project data;
- The availability of site access to undertake fieldwork; and
- Meteorological conditions including heat, cold, wind, rain and snow, which may constrain undertaking of fieldwork, or may affect the quality of the data being collected.

2.5 Step 5: Develop the analytical approach

2.5.1 Field Duplicates and Triplicates

A minimum of one set of field duplicates and triplicates will be collected for each set of 20 samples collected (an equivalent of 5%), excluding asbestos samples.

Field duplicate and triplicate samples will be collected by splitting one bulk sample across three separate sample containers.

Analysis of the duplicate samples and triplicate samples will be scheduled based on at least one of the analytes that the relevant parent sample is being analysed for.

The relative percent difference (RPD) of the detected concentrations in the parent and duplicate, and the parent and triplicate, will be calculated, and the result compared to the relevant data quality indicator (DQI), as set out in **Section 2.5.6**.

2.5.2 Trip Spikes and Trip Blanks

One trip spike and one trip blank will be used for each day of sampling⁴.

 $^{^{4}}$ When samples are being collected on that day, that will be analysed for BTEX and/or TRH C₆-C₁₀.

A minimum of one trip spike and one trip blank will be scheduled for BTEX analysis, during the project, provided the sample preservation, handling, transport and storage procedures used are the same for each day of sampling undertaken.

2.5.3 Equipment Rinsate Blanks

One rinsate blank will be used for each day of sampling⁵.

A minimum of one rinsate blank will be scheduled for analysis for at least one of the COPC, during the project, provided sample collection and equipment decontamination procedures are the same for each day of sampling.

Analysis of the rinsate blank will be based on at least one of the analytes that the parent sample is being analysed for (excluding asbestos).

2.5.4 Field Blanks

One field blank will be used for each day of sampling⁶.

2.5.5 Analytical Laboratory Quality Assurance and Quality Control

The primary analytical laboratory will:

- be NATA accredited for the methods used; and
- use a quality assurance and quality control (QA/QC) program that will typically include analysis of method blanks, matrix spikes, surrogate spikes, laboratory control samples and laboratory duplicates.

The primary analytical laboratory will report on whether the analytical results of the QA/QC program are within the criteria set out in the laboratory's adopted data quality objectives.

2.5.6 Data Quality Indicators

A set of data quality indicators (DQI) will be adopted for assessing the completeness, comparability, representativeness, precision and bias (accuracy) of data collected during fieldwork, the analytical data produced by the laboratory. Each of these DQI, and associated target criteria are set out in **Table 2.5.6**.

⁵ Only where non-disposable sampling equipment is being used on that day.

⁶ When samples are being collected on that day, that will be analysed for PFAS.

Table 2.5.6. Data Quality Indicators and Target Criteria

Completeness			
Field Considerations	Target Criteria	Laboratory Considerations	Target Criteria
Experienced sampling team used	Yes	Complete sample receipt advice and chain of custody attached	Yes
Sampling devices and equipment set out in sampling plan were used	Yes	Critical samples identified in sampling plan, analysed	Yes
Critical locations in sampling plan, sampled	Yes	Analysis undertaken addresses client nominated COPC in sampling plan	Yes
Critical samples in sampling plan, collected	Yes	Analytical methods reported in laboratory documentation and appropriate limit of reporting used	Yes
Completed field and calibration logs attached	Yes	Sample holding times met	Yes
Completed chain of custody attached	Yes		

Comparability			
Field Considerations	Target Criteria	Laboratory Considerations	Target Criteria
Same sampling team used for all work.	Yes	Same laboratory used for all analysis	Yes
Weather conditions suitable for sampling.	Yes	Comparable methods if different laboratories used	Yes
Same sample types collected and preserved in same way	Yes	Comparable limits of reporting if different laboratories used.	Yes
Relevant samples stored in insulated containers and chilled	Yes	Comparable units of measure if different laboratories have been used	Yes

Representativeness			
Field Considerations	Target Criteria	Laboratory Considerations	Target Criteria
Media identified in sampling plan, sampled	Yes	Samples identified in sampling plan, analysed.	Yes
Samples required by sampling plan, collected	Yes	-	-

Precision			
Field Considerations	Target Criteria	Laboratory Considerations	Target Criteria
Minimum 5% duplicates and triplicates collected and analysed	Yes	All laboratory duplicate RPDs within laboratory acceptance criteria	Yes
Minimum 10% duplicates and triplicates collected and analysed where PFAS is a contaminant of concern	N/A	-	-
RPD unlimited where detected concentrations are <10 times the limit of reporting.	Yes	-	-
RPD within 50% where detected concentrations are 10-20 times the limit of reporting.	Yes	-	-
RPD within 30% where detected concentrations are >20 times the limit of reporting.	Yes	-	-

Bias (Accuracy)				
Field Considerations	Target Criteria	Laboratory Considerations	Target Criteria	
Trip blank analyte results less than limit of reporting	Yes	Laboratory method blank results within laboratory acceptance limits	Yes	
Trip spike analyte results less between 60% and 140%	Yes	Laboratory control sample results within laboratory acceptance limits	Yes	
Rinsate blank analyte results less than limit of reporting	Yes	Laboratory spike sample results within laboratory acceptance limits.	Yes	
Field (PFAS) blank analyte results less than limit of reporting	N/A	-	-	

2.5.7 If / Then Statements

If the field and laboratory analytical dataset meets the DQI target assessment criteria, then the data may be considered adequately complete, comparable, representative, precise and unbiased, for the purpose of addressing the decisions / goals of this project as set out in **Section 2.2**.

If the field and laboratory analytical dataset does not meet the DQI target assessment criteria, then additional data may need to be collected to address gaps identified in the data.

2.6 Step 6: Performance and Acceptance Criteria

2.6.1 If / Then Decisions

There are two types of decision error:

- Sampling errors these occur when the sampling program does not adequately detect variability of a contaminant from point to point across a site. That is, the samples collected are not representative of site conditions (e.g. an appropriate number of representative samples have not been collected from each stratum, to account for estimated variability in that contaminant); and
- Measurement errors these occur during sample collection, preparation, analysis and reduction of data.

During land contamination assessment, these errors can result in either:

- a Type I error, where land contamination human health and/or ecological exposure risks are considered to be acceptable, when they are not acceptable; or
- a Type II error, where land contamination human health and/or ecological exposure risks are considered to be unacceptable, when they are acceptable.

For decision rules to be sound, they should be designed to mitigate risk of decision errors occurring. The risk of decision error on this project will be mitigated by:

- Ensuring fieldwork is undertaken by suitably experienced field staff and sub-contractors, with reference to the DQO adopted for this project;
- Ensuring laboratory analysis is undertaken by NATA accredited laboratories; and
- Ensuring assessment of field and laboratory analytical data is undertaken by suitably experienced environmental consultants and/or outsourcing assessment to technical experts (if warranted).

2.7 Step 7: Develop the plan for obtaining data

2.7.1 Sampling Point Densities and Locations

One groundwater well will be installed along the proposed alignment.

2.7.2 Groundwater Sampling Methods

Groundwater monitoring well MW1/BH01 will be established onsite, at the location nominated in Figure 1.

The bore will be drilled to a target depth of 4.0 m below ground surface, or 2.0 m below the inferred standing water level (SWL), whichever occurs first, using a drilling rig fitted with solid stem augers. Target depths will also consider changes in lithology and geological formations to avoid creating pathways between separate groundwater features (e.g., confining or semi confining layers).

A monitoring well will be constructed in each bore using 50 mm Class 18 uPVC machine slotted screen and casing, with a gravel pack extending from the base of the well to approximately 0.5 m above the top of the slotted screen section, followed by approximately 0.5 m of hydrated bentonite, then grout to the surface and installation of a gatic cover.

Monitoring well development will occur following installation, and groundwater will then be allowed to equilibrate before sampling (preferably 5 days later).

At the start of the groundwater monitoring event (GME), the depth to standing water level (SWL) in MW1/BH01 will be gauged using a water level meter. The groundwater will be purged using a peristaltic pump, until field groundwater quality parameters stabilise (including dissolved oxygen, electrical conductivity, oxidation-reduction potential, pH and temperature). These parameters will be measured using a calibrated water quality meter and flow cell. Observations will also be made of colour, clarity, odour and sheen in the purged water. Field water quality parameter measurements and observations will be recorded on a GME field sheet.

New, dedicated pump tubing, etc., will be used for purging and sampling of the monitoring well.

Samples for volatile analysis will be collected before semi volatile samples. Headspace in sample containers will be avoided. Relevant samples will be field filtered to 0.45µm.

Samples will be submitted to a NATA accredited laboratory for analysis.

2.7.3 Decontamination

Non-disposable sampling equipment will be decontaminated between prior to sampling to mitigate potential cross contamination. Decontamination will include the following procedure:

- Washing off the non-disposable sampling equipment with a solution of potable water and phosphate free detergent (e.g. Decon 90), noting that Decon 90 will not be used on equipment used for collection of samples that will be analysed for PFAS compounds;
- Rinsing the washed equipment with distilled or de-ionised water; and
- Air drying of the rinsed equipment.

2.7.4 Sample Identification, Handling, Storage and Transport

Groundwater samples will be identified using the relevant Alliance project number, the sampling point identification number (e.g. MW1) and date the sample was collected.

Samples will be placed in laboratory prepared containers (containing preservatives as appropriate). Samples will be stored in insulated containers with ice.

Samples will be transported to the relevant analytical laboratory by Alliance or a third-party courier, using chain of custody (COC) documentation.

2.7.5 Selection of Laboratory

The analytical laboratories used for this project will reputable industry recognised environmental laboratories, which are NATA accredited for the analytical methods used.

2.7.6 Scheduling of Laboratory Analysis

Collected samples will be scheduled for laboratory analysis based on:

- Client nominated contaminants of potential concern (COPC);
- Observations made of the sample when collected (including sheen and odour); and
- The need for specific qualitative or quantitative data to inform assessment of risk associated with other laboratory analytical data.

The client nominated laboratory analytical schedule (including upper limiting sample quantities) adopted for this project includes:

• pH, EC, TSS, Turbidity, BOD, MBAS, Chloride, Fluoride, Sulfate, Nitrate/Nitrite, ammonia, TRH, BTEX, PAH, OCP, OPP, PCB, Phenols, 17 Metals, Thermotolerant faecal coliforms (F.Coliforms), Enterococci and asbestos in water.

2.7.7 Analytical Methods, Limits of Reporting and Holding Times

The analytical methods, limits of reporting and sample holding times adopted for this project, are set out in **Table 2.7.7**

Analyte	Method	Limit of Reporting (µg/L)	Holding Time
BTEX and TRH C ₆ -C ₁₀	USEPA 5030, 8260B and 8020	1-2 and 50	14 days
TRH C ₁₀ -C ₄₀	USEPA 8015B & C	50-500	14 days
PAH	USEPA 8270	0.5-10	14 days
PCB	USEPA 8270	-	14 days
OCP/OPP	USEPA 8081	-	14 days
Metals	USEPA 6010, 6020	0.0002-0.05	6 months
Metals (Hg and Cr^{vi})	USEPA 8015B & C	0.1-5	6 months (28 days)
рН	АРНА 4500 рН	0.1 pH unit	24 hours (up to 7 days allowed)
Nitrogens (speciated including Ammonia)	APHA 4500-NH3, APHA 4500- NO3 4500-NO2 4500-NOX 4500- TKN 4500-Organic N	0.01-0.2 mg/L	2-28 days
Phenols	USEPA 8270, NEPM Schedule B3	0.05	7 days
Surfactants (MBAS)	APHA 5540	0.2 mg/L	2 days
Turbidity	APHA 2130	1 NTU	2 days
Biochemical Oxygen Demand (BOD5day)	APHA 5210	5 mg/L	2 days
Enterococci	AS 4276.9:2007	1 cfu/mL	1 day
Coliforms Total	AS 4276.5:2007	1 cfu/mL	1 day

Table 2.7.7 Analytical Methods, Limits of Reporting and Holding Times

3 Fieldwork

3.1 Groundwater

3.1.1 Installation of Groundwater Monitoring Wells

Groundwater monitoring well installation works were undertaken on 23 June 2022 under the supervision of an Alliance consultant Aaron Hong. The well was constructed using 50 mm Class 18 uPVC machine slotted screen and casing, gravel pack, bentonite seal, grout, and finished at the ground surface with a gatic cover. Groundwater monitoring well construction details were as follows:

- Slotted screen PVC pipe and sand from 3.5m to 1m depth below ground level (bgl);
- PVC casing from 1m to surface; and
- Bentonite from 1m to 0.5m bgl.

The monitoring well was developed on 22 July 2022 using a foot valve following installation.

3.1.2 Groundwater Monitoring Event

Standing water level in groundwater monitoring well, MW1/BH01, was gauged on 27 July 2022 by suitably experienced Alliance environmental consultant, Samuel Inameti, and the results obtained were recorded (refer copy of field groundwater quality parameter forms presented in **Appendix G**). The standing water level in MW1/BH01 was 0.3 m below top of casing (mBTOC). Survey of the well location and elevation by a registered surveyor was not within the scope of this assessment.

The groundwater monitoring well was then purged using a peristaltic pump, fitted to dedicated silicon and polyethylene tubing, until water quality parameters stabilised. The purge results were recorded (refer copy of field groundwater quality parameter forms presented in **Appendix G**).

A summary of field measured groundwater parameters is presented in **Table 3.1.2**.

Groundwater Parameter	Observation Summary
Sheen	Visual evidence of sheen on collected samples was not observed.
LNAPL / DNAPL	Visual evidence of light non aqueous phase liquid (LNAPL) / dense non aqueous phase liquid (DNAPL) on collected samples was not observed.
Odour	Pungent organic odour was detected in the samples collected.
Dissolved oxygen	Readings ranged from 0.03 ppm to 4.78 ppm.
Electrical Conductivity	Readings ranged from 410 µS/cm to 434 µS/cm.
рН	Readings ranged from pH 7.01 to pH 7.05.
Reduction oxygen (redox) potential	Readings ranged from -49.0 mV to -140.4 mV.

It is noted that water quality measurements were measured on extracted groundwater at the monitoring well. Although care was taken to minimise disturbance of groundwater (using low flow sampling methods and a flow cell), the results presented in this report (particularly dissolved oxygen) may not be representative of actual sub-surface groundwater conditions.

The same peristaltic pump and dedicated polyethylene and silicon tubing was used to collect a low flow sample from each monitoring well. Collected samples were placed in suitable laboratory prepared containers and labelled. The samples collected for metal analysis were filtered in the field during collection, using disposable 0.45 μ m filters.

A copy of the groundwater sampling equipment calibration documentation is presented in Appendix D.

4 Laboratory Analysis

The collected samples were transported to the analytical laboratory using chain of custody (COC) protocols. A selection of those samples were scheduled for laboratory analysis, taking into consideration the laboratory analytical schedule presented in **Table 2.7.6**, observations made in the field, and the results of field and headspace screening.

A copy of the COC, sample receipts and certificates of analysis, is presented in Appendix B.

The relevant laboratory analytical results were tabulated and presented in the attached **Table LR1** and **Table LR2**, to allow comparison with assessment criteria adopted for this project.

5 Data Quality Indicator (DQI) Assessment

In order to assess the quality of the field and laboratory analytical data collected for this project, that data was compared against the data quality indicators (DQI) established for this project (refer **Section 2.5.6**).

The results of that comparison is presented in Appendix C.

The DQI comparison results indicate that the field and laboratory data are adequately complete, comparable, representative, precise and unbiased (accurate), with in the context and objectives of this project.

6 Results and Discussion

6.1 Aquatic Ecosystem Protection

The following considerations have been made when assessing aquatic ecosystem protection assessment criteria:

- A default groundwater hardness (CaCO₃) value of 30 mg/L; and
- The criteria for the analytes benzo(a)pyrene and certain OCPs and PCBs were less than the laboratory limit of reporting (LOR). However, PAHs, OCPs and PCBs were not detected in the groundwater samples analysed. Therefore, the risk of benzo(a)pyrene, OCPs and PCBs in groundwater at concentrations greater than the criteria is considered low.

The detected concentrations of the client nominated COPC in the groundwater samples analysed, were less than the aquatic ecosystems assessment criteria, with the exception of:

• Detected concentration of copper of 3 μg/L for MW01/BH01 (criterion of 2.5 μg/L);

6.2 Irrigation

The detected concentrations of the relevant COPC in the groundwater samples analysed, were less than the ANZECC (2000) irrigation criteria for metals.

Petroleum hydrocarbons were detected above the limit of reporting in sample MW1 and QAQC1. However, the concentrations detected were less than the New Zealand Ministry for the Environment (2011) irrigation criteria for petroleum hydrocarbons. The petroleum hydrocarbon criteria are based on spray irrigation.

Furthermore, no sheen or odour were observed in the samples collected.

6.3 Trade Waste

The detected concentrations of the client nominated COPCs in the groundwater samples analysed, were less than the adopted Sydney Water trade waste criteria.

6.4 Recreational Waters – Secondary Contact in Freshwater

The detected concentration of Total Coliforms (>240000 cfu/100mL) in the groundwater sample analysed exceeded the water quality guidelines criteria for secondary contact in freshwater (1000cfu/100mL).

This report must be read in conjunction with the *Important Information About This Report* statements at the front of this report.

7 References

ANZECC 2000, 'Australian and New Zealand Guidelines for Fresh and Marine Water Quality' dated October 2000

ANZG 2018, 'Australian and New Zealand guidelines for fresh and marine water quality' (https://www.waterquality.gov.au/anz-guidelines).

Australian Government 2013, 'Guidelines for groundwater quality protection in Australia: National Water Quality Management Strategy', dated March 2013

NZ Ministry for the Environment 2011, 'Guidelines for Assessing and Managing Petroleum Hydrocarbon Contaminated Sites in New Zealand', dated October 2011.

NSW DEC 2007, 'Contaminated Sites: Guidelines for the Assessment and Management of Groundwater Contamination' dated March 2007, ref: DEC 2007/144.

NSW EPA 2020b, 'Contaminated Land Guidelines: Consultants reporting on contaminated land' dated May 2020, ref: EPA2020P2233.

Sydney Water, 'Industrial customers: Acceptance standards and charging rates for 2021-2022', ref: SW277 06/21.

Warne et al 2018, 'Revised Method for Deriving Australian and New Zealand Water Quality Guideline Values for Toxicants – update of 2015 version'. Prepared for the revision of the Australian and New Zealand Guidelines for Fresh and Marine Water Quality.

FIGURES

	IIO	nce	F
aeotechn	ical & enviro	nmental solutions	ľ

Client Name:	Ausgrid	N	0 150	Figure Number:	1		
Project Name:	Underground Cable Projects			Figure/Drawing Date:	24/08/2022		
Project Location	Alexandria NSW 2015 to Kingsford NSW 2032		Meters	Report Number:	14777-ER-2-2		

TABLES

Table LR1 AZK - Burrows Road Groundwater Analytical Results & Adopted Site Criteria 14777-ER-2-1

			Sydney Water (2021-2022)	ANZG (2018)	ANZECC 2000	ANZECC 2000	NZ Ministry for the Environment (2011)	MW1 / BH1	QAQC1	TRIP SPIKE	TRIP BLANK
Analytes	Units	LOR		Fresh Waters 80% (Hardness Modified Values)	Irrigation (short- term trigger values)	WQG for recreational Waters Freshwaters/ Secondary Contact					
Microbiological	efu/100ml	1						20			
Total Coliforms	cfu/100mL	1	-	-	-	1000	-	30 >240000	-	-	-
Metals/Metalloids Aluminium, Al	μg/L	1	100000	55	20	-	-	<50	<50	-	-
Arsenic, As Barium. Ba	μg/L ug/l	1	1000 5000	140	2000	-	-	9 <20	9 <20	-	-
Beryllium, Be	μg/L	1	-	-	500.0	-	-	<1	<1	-	-
Cadmium, Cd	μg/L μg/L	50 0.2	100000 1000	2500 0.8	refer to guideline 50.00		-	120 <0.2	<0.2	-	-
Chromium, Cr Cobalt. Co	μg/L ug/l	1	3000 5000	3.3	1000	-	-	<1	<1	-	-
Copper, Cu	μg/L	1	5000	2.5	5000	-	-	3	2	-	-
Iron, Fe Lead, Pb	μg/L μg/L	5	2000	- 9.4	- 5000	-	-	9200 <1	<1	-	-
Manganese, Mn Mercury (Total), Hg	μg/L ug/L	5 0.1	10000 30	3600	10000	-	-	120 <0.1	120 <0.1	-	-
Molybdenum Nickel Ni	μg/L	1	100000	-		-	-	7	7	-	-
Selenium (Total), Se	μg/L μg/L	1	5000	34	50	-	-	<1	<1	-	-
Uranium Vanadium	μg/L μg/L	5	- 10000	-	-		-	<5 7	<5 <5	-	-
Zinc, Zn Bolycyclic Aromatic Hydrocarbonc	μg/L	5	5000	31	5000	-	-	6	<5	-	-
Acenaphthene	μg/L	1	-	-	-	-	-	<1	<1	-	-
Acenaphthylene Anthracene	μg/L μg/L	1	-	- 7	-		-	<1 <1	<1 <1	-	-
Benzo(a)anthracene	μg/L	1	-	-	-	-	-	<1	<1	-	-
Benzo(b&j)fluoranthene	μg/L μg/L	1	-		-		-	<1	<1	-	-
Benzo(ghi)perylene Benzo(k)fluoranthene	µg/L це/I	1		-	-	-	-	<1	<1	-	-
Chrysene	μg/L	1	-	-	-	-	-	<1	<1	-	-
Fluoranthene	μg/L μg/L	1		2	-		-	<1 <1	<1 <1	-	-
Fluorene Indeno(1,2,3-cd)pyrene	μg/L цр/I	1	-	-	-	-	-	<1	<1	-	-
Naphthalene	μg/L	1		85	-		-	<1	<1	-	-
Pyrene	μg/L μg/L	1		-	-		-	<1 <1	<1 <1	-	
Total PAH Total Recoverable Hydrocarbons - 2013 NEPM Fract	μg/L	1	5000	-	-	-	-	<1	<1	-	
TRH C10-C36 Total	μg/L	100000	-	-	-	-	>solubility ^	1160	-	-	-
TRH C10-C14 TRH C15-C28	μg/L μg/L	50000 100000	-	-	-		- 1800	160 700	-	-	-
TRH C29-C36	μg/L	100000	-	-	-	-	-	300	-	- 110	-
Naphthalene	μg/L	5000	-	-	-	-	-	<10	-	110	<5000
TRH >C10-C16 (F2) TRH >C10-C16 (F2) minus Naphthalene	μg/L μg/L	50000 50000	-	-	-	-	-	220	-	-	-
TRH >C10-C40 Total (F bands)	μg/L	100000	-	-	-	-	-	1020	-	-	-
TRH >C34-C40 (F4)	μg/L	100000	-	-	-	-	-	<100	-	-	-
TRH C6-C10 TRH C6-C10 minus BTEX (F1)	μg/L μg/L	20000 20000	-	-	-	-	-	90 70	-	- 110	<20000 <20000
Organochlorine Pesticides		0.2						-0.2			
4.4 - DDE	μg/L	0.2	-	-	-	-	-	< 0.2	-	-	-
4.4 - DDT a - BHC	μg/L μg/L	0.2	-	-	-		-	< 0.2	-	-	-
Aldrin	μg/L	0.2	-	0.001	-	-	-	< 0.2	-	-	-
b - BHC	μg/L μg/L	0.2	-	-	-		-	< 0.2	-	-	-
Chlordanes (total) d - BHC	μg/L μg/L	2 0.2	-	0.27	-	-	-	<2 < 0.2	-	-	-
DDT + DDE + DDD (total)	μg/L	0.2	-	0.04	-	-	-	< 0.2	-	-	-
Endosulfan 1	μg/L	0.2	-	-	-	-	-	< 0.2	-	-	-
Endosulfan 2 Endosulfan sulphate	μg/L μg/L	0.2	-	-	-	-	-	< 0.2	-	-	-
Endrin Endrin Aldonudo	μg/L	0.2	-	0.06	-	-	-	< 0.2	-	-	-
Endrin Ketone	μg/L μg/L	0.2	-	-	-		-	< 0.2	-	-	-
g-BHC (Lindane) Heptachlor	μg/L μg/L	0.2	-	1	-		-	< 0.2 < 0.2	-	-	-
Heptachlor epoxide	μg/L	0.2	-	-	-	-	-	< 0.2	-	-	-
Methoxychlor	μg/L	0.2	-	-	-		-	< 0.2	-	-	-
i oxaphene Vic EPA IWRG 621 OCP 9total)	μg/L μg/L	5 2		0.5	-		-	<5	-	-	-
Vic EPA IWRG 621 Other OCP (total) Organophosphorus Pesticides	μg/L	2	-	-	-	-	-	< 0.2	-	-	-
Azinphos-methyl	μg/L	2	-	-	-	-	-	<2	-	-	-
Boistar Chlorfenvinphos	μg/L μg/L	2 20		-	-	-	-	<2 <20			
Chlorpyrifos Chlorpyrifos-methyl	μg/L	2	-	0.11	-	-	-	<2	-	-	-
Coumaphos	μg/L	20	-	-	-		-	<20	-	-	-
Demeton-O Demeton-S	μg/L μg/L	2		-	-	-	-	<2	-		
Diazinon Dichlorvos	μg/L	2	-	0.2	-	-	-	<2	-	-	-
Dimethoate	μg/L	2	-	0.2	-	-	-	<2	-	-	
Usultoton EPN	μg/L μg/L	2		-	-		-	<2	-	-	-
Ethion Ethoprop	μg/L μσ/Ι	2	-	-	-	-	-	<2	-	-	-
Ethyl parathion	μg/L	2	-		-	-	-	<2	-	-	-
Fensulfothion	μg/L μg/L	2		0.3	-	-	-	<2	-	-	-
Fenthion Malathion	μg/L	2	-	-	-	-	-	<2	-	-	-
Merphos	μg/L	2	-	-	-		-	<2	-	-	-
Methyl parathion Mevinphos	μg/L μg/L	2	-	-	-		-	<2 <2	-	-	
Monocrotophos Naled	μg/L	2	-	-	-	-	-	<2	-	-	-
Omethoate	μg/L μg/L	2		-	-		-	<2 <20	-		-
Phorate Pirimiphos-methyl	μg/L μg/l	2	-	-	-	-	-	<2 <20	-	-	-
Pyrazophos	μg/L	2	-	-	-		-	<2	-	-	-
Terbufos	μg/L μg/L	2		-	-		-	<2 <2		-	
Tetrachlorvinphos Tokuthion	μg/L μσ/I	2	-	-	-	-	-	<2	-	-	-
Trichloronate	μg/L	2	-	-	-	-	-	<2		-	-

				Fresh Waters 80% (Hardness	Irrigation (short- term trigger values)	WQG for recreational Waters -					
				Modified Values)		Freshwaters/					
Analytes	Units	LOR				Secondary contact					
Volatile Organics											
Benzene	μg/L	100	100	2000	-	-	-	<100	<100	100	<100
Ethylbenzene	μg/L	100	1000	160	-	-	-	<100	<100	110	<100
m&p-Xylenes	μg/L	200	-	150	-	-	-	<200	<200	110	<200
o-Xylenes	μg/L	100	-	640	-	-	-	<100	<100	110	<100
Toluene	μg/L	100	500	330	-	-	-	<100	<100	110	<100
Xylenes - Total	μg/L	300	1000	-	-	-	-	<300	<300	110	<300
Polychlorinated Biphenyls											
Aroclor-1016	μg/L	5	-	-	-	-	-	<5	<5	-	-
Aroclor-1221	μg/L	5	-	-	-	-	-	<5	<5	-	-
Aroclor-1232	μg/L	5	-	-	-	-	-	<5	<5	-	-
Aroclor-1242	μg/L	5	-	1.7	-	-	-	<5	<5	-	-
Aroclor-1248	μg/L	5	-	-	-	-	-	<5	<5	-	-
Aroclor-1254	μg/L	5	-	0.20	-	-	-	<5	<5	-	-
Aroclor-1260	μg/L	5	-	-	-	-	-	<5	<5	-	-
Total PCB*	μg/L	5	-	-	-	-	-	<5	<5	-	-
Phenolic compounds											
Phenolic compounds (non-chlorinated)	mg/L	0.1	1	-	-	-	-	<0.1	-	-	-
Phenolic compounds (chlorinated)	mg/L	0.05	5	-	-	-	-	<0.05	-	-	-
Physiochemical											
Ammonia (as N)	mg/L	0.01	100	-	-	-	-	18	-	-	-
Biochemical Oxygen Demand (BOD-5 Day)	mg/L	5	230	-	-	-	-	38	-	-	-
Nitrate (as N)	mg/L	0.02	-	-	-	-	-	< 0.02	-	-	-
Nitrite (as N)	mg/L	0.02	-	-	-	-	-	< 0.02	-	-	-
Sulphate (as SO4)	mg/L	2	2000	-	-	-	-	5	-	-	-
Chloride	mg/L	1	-	-	-	-	-	3.4	-	-	-
Conductivity (at 25 degree celcius)	uS/cm	10	-	-	-	-	-	370	-	-	-
MBAS Calcualted as MW: 288	mg/L	0.2	-	-	-	-	-	0.6	-	-	-
рН	pH Units	0.1	-	-	-	-	-	7.4	-	-	-
Turbidity	NTU	1	-	-	-	-	-	160	-	-	-
Total Suspended Solids Dried at 103°C–105°C	mg/L	5	600	-	-	-	-	150	-	-	-

ANZECC 2000

NZ Ministry for the Environment (2011)

MW1/BH1

QAQC1

TRIP SPIKE

TRIP BLANK

ANZECC 2000

Table LR1 A2K - Burrows Road Groundwater Analytical Results & Adopted Site Criteria 14777-ER-2-1

N/A – Not Analysed. * Results in brackets are after silica gel clean-up ^ Criteria are for total petroleum hydrocarbon fractions C7 to C9, C9 to C14 and C15 to C36 which differ slightly from the fractions presented in the results

Sydney Water (2021-2022)

ANZG (2018)

alliance

Table LR2			Sample ID	MW1/BH1	QAQC1	
A2K - Burro	ws Road		Reference	S22-JI0057060	S22-JI0057063	
RPD Summa	ary		Date Sampled	27/7/2022	27/7/2022	RPD (%)
14777-ER-2-	1		Sample Matrix	Water	Water	
Group	Analyte	Units	LOR			
	Aluminium, Al	μg/L	<50	<50	<50	0
	Arsenic, As	μg/L	<1	9	9	0
	Barium, Ba	μg/L	<20	<20	<20	0
	Beryllium, Be	μg/L	<1	<1	<1	0
	Boron, B	μg/L	<50	120	120	0
	Cadmium, Cd	μg/L	<0.2	<0.2	<0.2	0
	Chromium, Cr	μg/L	<1	<1	<1	0
	Cobalt, Co	μg/L	<1	<1	<1	0
	Copper, Cu	μg/L	<1	3	2	40
Metals	Iron, Fe	μg/L	<50	9200	-	-
	Lead, Pb	μg/L	<1	<1	<1	0
	Manganese, Mn	μg/L	<5	120	120	0
	Mercury (Total), Hg	μg/L	<0.1	<0.1	<0.1	0
	Molybdenum	μg/L	<5	7	7	0
	Nickel, Ni	μg/L	<1	2	2	0
	Selenium (Total), Se	μg/L	<1	<1	<1	0
	Uranium	μg/L	<5	<5	<5	0
	Vanadium	μg/L	<5	7	<5	33
	Zinc, Zn	μg/L	<5	6	<5	18
	Acenaphthene	μg/L	<1	<1	<1	0
	Acenaphthylene	μg/L	<1	<1	<1	0
	Anthracene	μg/L	<1	<1	<1	0
	Benzo(a)anthracene	μg/L	<1	<1	<1	0
	Benzo(a)pyrene	μg/L	<1	<1	<1	0
	Benzo(b&j)fluoranthene	μg/L	<1	<1	<1	0
	Benzo(ghi)perylene	μg/L	<1	<1	<1	0
	Benzo(k)fluoranthene	μg/L	<1	<1	<1	0
РАН	Chrysene	μg/L	<1	<1	<1	0
	Dibenzo(ah)anthracene	μg/L	<1	<1	<1	0
	Fluoranthene	μg/L	<1	<1	<1	0
	Fluorene	μg/L	<1	<1	<1	0
	Indeno(1,2,3-cd)pyrene	μg/L	<1	<1	<1	0
	Naphthalene	μg/L	<1	<1	<1	0
	Phenanthrene	μg/L	<1	<1	<1	0
	Pyrene	μg/L	<1	<1	<1	0
	Total PAH (18)	μg/L	<1	<1	<1	0

LEGEND	
	RPD not exceeding criteria by <10 times LOR
	RPD not exceeding criteria by 10-20 times LOR (50%)
	RPD not exceeding criteria by >20 times LOR (30%)
	RPD exceeding criteria
-	Not Analysed

APPENDIX A – Logs

Alliance Geotechnical Pty Ltd

T: 1800 288 188

E: office@allgeo.com.au W: www.allgeo.com.au

BH No: A2K-BH01 Sheet: 1 of 1 Job No: 14777

Borehole Log

Client: Ausgrid

Method

Ц

Project: Ausgrid Cable Project

Started: 23/06/2022 Finished: 23/06/2022 Location: 53 Burrows Rd, St Peter Hole Location: Refer to drawing 14777-GR-1-1-A Borehole Size: 250 mm Rig Type: TDLR690 Driller: CC Logged: AH Hole Coordinates 332340E, 6245731N RL Surface: 2.59m Contractor: Alliance Geotechnical Bearing: ---Checked: AS Classification Symbol Consistency/ Density Index Moisture Condition Samples Graphic Log DCP per Material Description Tests Additional Observations 150mm Water Remarks Well RL Depth Details (m) (m) PAVEMENT Asphaltic CONCRETE, 120mm. 2.5 |||||FILL: Sandy GRAVEL, medium sub-angular igneous gravel, D -FILL ADT 11 yere, fine to medium grained sand, poorly graded, appears well compacted. FILL: Gravelly SAND, medium grained, brown, fine to medium sub-rounded sandstone gravel, well graded, with boulders, trace clay and silt (crushed sandstone) М 111 |||||ES ||0<u>.5</u> M ES 2.0 FILL: SAND, medium grained, dark brown, with silt. 1111 Clayey SAND, fine to medium grained, dark grey, low to 1111 VL COASTAL DEPOSITS CI -CI w medium plasticity. |||||ES GW @ 0.9m 1.0 TR 1.5 | | | |||||||||11111 Μ 1111 1.5 11111 1.0 SPT 0, 1, 0 N=1 1111 ||||||11111 ||||||2.0 11111 0.5 |||||||||||PSD 1111 2.5 1111 0.0 11111 1111 TR | | | | 3.0 -0.5 ||||||SPT 0, 1, 0 |||||N=1 11111 3.5 Target Depth Borehole A2K-BH01 terminated at 3.5m <u>-1</u>.0 11111 11111 ||||||1111 1111 4<u>.0</u> <u>-1</u>.5 ||||||1111 1111 4<u>.5</u> |||||||||||||||<u>-2</u>.0 ||||||||||||||||||5.0

A. AUGERED BOREHOLE + LOCATION CHANGE 14777.GPJ GINT STD AUSTRALIA.GDT 23/8/22

APPENDIX B – Laboratory Documentation

Alliance Geotechnical 10 Welder Road Seven Hills NSW 2147

Attention:

Thalia Park-Ross

Report Project name Project ID Received Date **909467-W** ALEXANDRIA NSW 14777 Jul 28, 2022

Client Sample ID			DU4	04001
Sample Matrix			Wator	Water
Eurofins Sample No.			S22-J10057060	S22-J10057063
Date Sampled			Jul 27, 2022	Jul 27, 2022
Test/Reference	LOR	Unit		
BTEX				
Benzene	0.001	mg/L	< 0.001	-
Toluene	0.001	mg/L	< 0.001	-
Ethylbenzene	0.001	mg/L	0.004	-
m&p-Xylenes	0.002	mg/L	0.008	-
o-Xylene	0.001	mg/L	0.007	-
Xylenes - Total*	0.003	mg/L	0.015	-
4-Bromofluorobenzene (surr.)	1	%	84	-
Total Recoverable Hydrocarbons				
TRH C6-C9	0.02	mg/L	0.04	-
TRH C10-C14	0.05	mg/L	0.16	-
TRH C15-C28	0.1	mg/L	0.7	-
TRH C29-C36	0.1	mg/L	0.3	-
TRH C10-C36 (Total)	0.1	mg/L	1.16	-
Naphthalene ^{N02}	0.01	mg/L	< 0.01	-
TRH C6-C10	0.02	mg/L	0.09	-
TRH C6-C10 less BTEX (F1) ^{N04}	0.02	mg/L	0.07	-
TRH >C10-C16	0.05	mg/L	0.22	-
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	0.22	-
TRH >C16-C34	0.1	mg/L	0.8	-
TRH >C34-C40	0.1	mg/L	< 0.1	-
TRH >C10-C40 (total)*	0.1	mg/L	1.02	-
Polycyclic Aromatic Hydrocarbons				
Acenaphthene	0.001	mg/L	< 0.001	< 0.001
Acenaphthylene	0.001	mg/L	< 0.001	< 0.001
Anthracene	0.001	mg/L	< 0.001	< 0.001
Benz(a)anthracene	0.001	mg/L	< 0.001	< 0.001
Benzo(a)pyrene	0.001	mg/L	< 0.001	< 0.001
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	< 0.001	< 0.001
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001	< 0.001
Benzo(k)fluoranthene	0.001	mg/L	< 0.001	< 0.001
Chrysene	0.001	mg/L	< 0.001	< 0.001
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001	< 0.001
Fluoranthene	0.001	mg/L	< 0.001	< 0.001
Fluorene	0.001	mg/L	< 0.001	< 0.001
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001	< 0.001

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Client Sample ID			BH1	QAQC1
Sample Matrix			Water	Water
Eurofins Sample No.			S22-JI0057060	S22-JI0057063
Date Sampled			Jul 27, 2022	Jul 27, 2022
Test/Poforonco		Lloit	001 21, 2022	001 21, 2022
Polycyclic Aromatic Hydrocarbons	LOK	Unit		
Nonhtholono	0.001		- 0.001	- 0.001
Report and a second sec	0.001	mg/L	< 0.001	< 0.001
Prenanthrene	0.001	mg/L	< 0.001	< 0.001
Total DALI*	0.001	mg/L	< 0.001	< 0.001
2 Eluorohinhonul (aurr.)	0.001		< 0.001	< 0.001
2-Fluorobiphenyl (sull.)	1	0/		144
P-Teiphenyi-d14 (sull.)		70		144
Organochionne Festicides	0.000		0.000	
	0.002	mg/L	< 0.002	-
	0.0002	mg/L	< 0.0002	-
	0.0002	mg/L	< 0.0002	-
	0.0002	mg/L	< 0.0002	-
	0.0002	mg/L	< 0.0002	-
	0.0002	mg/L	< 0.0002	-
	0.0002	mg/L	< 0.0002	-
	0.0002	mg/L	< 0.0002	-
	0.0002	mg/L	< 0.0002	-
	0.0002	mg/L	< 0.0002	-
	0.0002	mg/L	< 0.0002	-
	0.0002	mg/L	< 0.0002	-
Endrin eldebyde	0.0002	mg/L	< 0.0002	-
Endrin kotono	0.0002	mg/L	< 0.0002	-
	0.0002	mg/L	< 0.0002	-
Hentachlor	0.0002	mg/L	< 0.0002	-
Heptachlor enovide	0.0002	mg/L	< 0.0002	
Heyachlorobenzene	0.0002	mg/L	< 0.0002	
Methoxychlor	0.0002	ma/l	< 0.0002	_
Toxaphene	0.0002	mg/L	< 0.0002	_
Aldrin and Dieldrin (Total)*	0.0002	mg/L	< 0.0002	_
DDT + DDF + DDD (Total)*	0.0002	ma/l	< 0.0002	_
Vic EPA IWRG 621 OCP (Total)*	0.002	ma/l	< 0.002	-
Vic EPA IWRG 621 Other OCP (Total)*	0.002	ma/l	< 0.002	-
Dibutylchlorendate (surr.)	1	%		-
Tetrachloro-m-xylene (surr.)	1	%		-
Organophosphorus Pesticides	-	, •		
Azinphos-methyl	0.002	ma/l	< 0.002	_
Bolstar	0.002	ma/l	< 0.002	_
Chlorfenvinphos	0.02	ma/l	< 0.02	-
Chlorpyrifos	0.002	ma/l	< 0.002	-
Chlorpyrifos-methyl	0.002	ma/L	< 0.002	-
Coumaphos	0.02	ma/l	< 0.02	-
Demeton-S	0.002	ma/L	< 0.002	-
Demeton-O	0.002	ma/L	< 0.002	-
Diazinon	0.002	ma/l	< 0.002	-
Dichlorvos	0.002	ma/L	< 0.002	-
Dimethoate	0.002	ma/L	< 0.002	-
Disulfoton	0.002	ma/l	< 0.002	-
EPN	0.002	ma/L	< 0.002	-
Ethion	0.002	mg/L	< 0.002	-

Client Sample ID			BH1	QAQC1
Sample Matrix			Water	Water
Eurofins Sample No.			S22-JI0057060	S22-JI0057063
Date Sampled			Jul 27, 2022	Jul 27, 2022
Test/Reference	LOR	Unit		
Organophosphorus Pesticides		0		
Ethoprop	0.002	ma/l	< 0.002	-
Ethyl parathion	0.002	ma/l	< 0.002	-
Fenitrothion	0.002	ma/L	< 0.002	-
Fensulfothion	0.002	ma/L	< 0.002	-
Fenthion	0.002	ma/L	< 0.002	-
Malathion	0.002	mg/L	< 0.002	-
Merphos	0.002	mg/L	< 0.002	-
Methyl parathion	0.002	mg/L	< 0.002	-
Mevinphos	0.002	mg/L	< 0.002	-
Monocrotophos	0.002	mg/L	< 0.002	-
Naled	0.002	mg/L	< 0.002	-
Omethoate	0.02	mg/L	< 0.02	-
Phorate	0.002	mg/L	< 0.002	-
Pirimiphos-methyl	0.02	mg/L	< 0.02	-
Pyrazophos	0.002	mg/L	< 0.002	-
Ronnel	0.002	mg/L	< 0.002	-
Terbufos	0.002	mg/L	< 0.002	-
Tetrachlorvinphos	0.002	mg/L	< 0.002	-
Tokuthion	0.002	mg/L	< 0.002	-
Trichloronate	0.002	mg/L	< 0.002	-
Triphenylphosphate (surr.)	1	%	Q09INT	-
Polychlorinated Biphenyls				
Aroclor-1016	0.005	mg/L	< 0.005	-
Aroclor-1221	0.005	mg/L	< 0.005	-
Aroclor-1232	0.005	mg/L	< 0.005	-
Aroclor-1242	0.005	mg/L	< 0.005	-
Aroclor-1248	0.005	mg/L	< 0.005	-
Aroclor-1254	0.005	mg/L	< 0.005	-
Aroclor-1260	0.005	mg/L	< 0.005	-
Total PCB*	0.005	mg/L	< 0.005	-
Dibutylchlorendate (surr.)	1	%	Q09INT	-
Tetrachloro-m-xylene (surr.)	1	%		-
Phenols (Halogenated)				
2-Chlorophenol	0.003	mg/L	< 0.003	-
2.4-Dichlorophenol	0.003	mg/L	< 0.003	-
2.4.5-Trichlorophenol	0.01	mg/L	< 0.01	-
2.4.6-Trichlorophenol	0.01	mg/L	< 0.01	-
2.6-Dichlorophenol	0.003	mg/L	< 0.003	-
4-Chloro-3-methylphenol	0.01	mg/L	< 0.01	-
Pentachlorophenol	0.01	mg/L	< 0.01	-
I etrachlorophenols - Total	0.03	mg/L	< 0.03	-
I otal Halogenated Phenol*	0.01	mg/L	< 0.01	-
Prenois (non-Halogenated)				
2-Cyclohexyl-4.6-dinitrophenol	0.1	mg/L	< 0.1	-
2-Methyl-4.6-dinitrophenol	0.03	mg/L	< 0.03	-
2-Nitrophenol	0.01	mg/L	< 0.01	-
2.4-Dimethylphenol	0.003	mg/L	< 0.003	-
	0.03	mg/L	< 0.03	-
	0.003	mg/L	< 0.003	-

Client Sample ID			BH1	QAQC1
Sample Matrix			Water	Water
Eurofins Sample No.			S22-J10057060	S22-JI0057063
Date Sampled			Jul 27. 2022	Jul 27. 2022
	LOR	Unit		
Phenois (non-Halogenated)	LOIN	Onit		
3&4-Methylphenol (m&n-Cresol)	0.006	ma/l	< 0.006	_
Total cresols*	0.01	ma/l	< 0.01	-
4-Nitrophenol	0.03	ma/L	< 0.03	-
Dinoseb	0.1	ma/l	< 0.1	-
Phenol	0.003	ma/L	< 0.003	-
Phenol-d6 (surr.)	1	%	121	-
Total Non-Halogenated Phenol*	0.1	mg/L	< 0.1	-
Ŭ Ŭ				
Ammonia (as N)	0.01	mg/L	18	-
Biochemical Oxygen Demand (BOD-5 Day)	5	mg/L	38	-
Chloride	1	mg/L	3.4	-
Conductivity (at 25 °C)	10	uS/cm	370	-
Fluoride (Total)	0.5	mg/L	0.7	-
MBAS Calculated as MW: 288	0.2	mg/L	0.6	-
Nitrate (as N)	0.02	mg/L	< 0.02	-
Nitrite (as N)	0.02	mg/L	< 0.02	-
pH (at 25 °C)	0.1	pH Units	7.4	-
Sulphate (as SO4)	2	mg/L	5.0	-
Total Suspended Solids Dried at 103 °C to 105 °C	5	mg/L	150	-
Turbidity	1	NTU	160	-
Heavy Metals		-		
Aluminium (filtered)	0.05	mg/L	< 0.05	< 0.05
Arsenic (filtered)	0.001	mg/L	0.009	0.009
Barium (filtered)	0.02	mg/L	< 0.02	< 0.02
Beryllium (filtered)	0.001	mg/L	< 0.001	< 0.001
Boron (filtered)	0.05	mg/L	0.12	0.12
Cadmium (filtered)	0.0002	mg/L	< 0.0002	< 0.0002
Chromium (filtered)	0.001	mg/L	< 0.001	< 0.001
Cobalt (filtered)	0.001	mg/L	< 0.001	< 0.001
Copper (filtered)	0.001	mg/L	0.003	0.002
Iron	0.05	mg/L	9.2	-
Lead (filtered)	0.001	mg/L	< 0.001	< 0.001
Manganese (filtered)	0.005	mg/L	0.12	0.12
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001
Molybdenum (filtered)	0.005	mg/L	0.007	0.007
Nickel (filtered)	0.001	mg/L	0.002	0.002
Selenium (filtered)	0.001	mg/L	< 0.001	< 0.001
Uranium (filtered)	0.005	mg/L	< 0.005	< 0.005
Vanadium (filtered)	0.005	mg/L	0.007	< 0.005
Zinc (filtered)	0.005	mg/L	0.006	< 0.005
Pathogens	1	1		
Enterococci (MPN)	1	MPN/100mL	see attached	-
Total Coliforms (MPN)	1	MPN/100mL	see attached	-

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
BTEX	Svdnev	Jul 29, 2022	14 Davs
- Method: LTM-ORG-2010 BTEX and Volatile TRH	- , ,		
Total Recoverable Hydrocarbons	Svdnev	Jul 29, 2022	7 Davs
- Method: I TM-ORG-2010 TRH C6-C40	-)		
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Svdnev	Jul 29, 2022	7 Davs
- Method: LTM-ORG-2010 TRH C6-C40	- , ,		
Eurofins Suite B1			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Svdnev	Jul 29, 2022	7 Davs
- Method: TM-ORG-2010 TRH C6-C40	-)		
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Svdnev	Jul 29, 2022	7 Davs
- Method: TM-ORG-2010 TRH C6-C40	eyaney		. 20,0
Polycyclic Aromatic Hydrocarbons	Svdnev	Jul 29, 2022	7 Davs
- Method: I TM-ORG-2130 PAH and Phenols in Soil and Water	-)		
Ammonia (as N)	Melbourne	Jul 29, 2022	28 Days
- Method: APHA 4500-NH3 Ammonia Nitrogen by FIA			20 2 4 9 0
Biochemical Oxygen Demand (BOD-5 Day)	Melbourne	Jul 29, 2022	2 Davs
- Method: I TM-INO-4010 Biochemical Oxygen Demand (BOD5) in Water			2 2 4) 0
Chloride	Svdnev	Jul 29, 2022	28 Days
- Method: I TM-INO-4270 Anions by Ion Chromatography	eyaney		20 2 4) 0
Conductivity (at 25 °C)	Svdnev	Jul 29, 2022	28 Days
- Method: I TM-INO-4030 Conductivity	eyaney		20 2 4) 0
Fluoride (Total)	Melbourne	Jul 29, 2022	28 Days
- Method: APHA 4500 F-C Fluoride by Ion Selective Electrode			20 2 4) 0
MBAS Calculated as MW ² 288	Melbourne	Jul 29, 2022	2 Davs
- Method: LTM-INO-4080 MBAS as MW: 288 (filtered)			
Nitrate (as N)	Melbourne	Jul 29. 2022	28 Davs
- Method: LTM-INO-4120 Analysis of NOx NO2 NH3 by FIA			
Nitrite (as N)	Melbourne	Jul 29. 2022	2 Davs
- Method: LTM-INO-4120 Analysis of NOx NO2 NH3 by FIA			- 9 -
pH (at 25 °C)	Svdnev	Jul 29. 2022	0 Hour
- Method: LTM-GEN-7090 pH in water by ISE	-))		
Sulphate (as SO4)	Sydney	Jul 29, 2022	28 Days
- Method: In-house method LTM-INO-4270 Sulphate by Ion Chromatograph	, ,	,	,
Total Suspended Solids Dried at 103 °C to 105 °C	Sydney	Jul 29, 2022	7 Days
- Method: LTM-INO-4070 Analysis of Suspended Solids in Water by Gravimetry			2
Turbidity	Sydney	Jul 29, 2022	2 Days
- Method: LTM-INO-4140 Turbidity by Nephelometric Method			2
Heavy Metals (filtered)	Sydney	Jul 29, 2022	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			·
Heavy Metals	Melbourne	Jul 29, 2022	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			-
Mercury (filtered)	Sydney	Jul 29, 2022	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Eurofins Suite B15			
Organochlorine Pesticides	Sydney	Jul 29, 2022	7 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			-
Organophosphorus Pesticides	Sydney	Jul 29, 2022	7 Days
- Method: LTM-ORG-2200 Organophosphorus Pesticides by GC-MS			-
Polychlorinated Biphenyls	Sydney	Jul 29, 2022	7 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water	-		-
Phenols (Halogenated)	Sydney	Jul 29, 2022	7 Days

Description	Testing Site	Extracted	Holding Time
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Phenols (non-Halogenated)	Sydney	Jul 29, 2022	7 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			

		C	Eurofins Env	ironment Testi	ng Australia P	ty Ltd																			Eu ABI	rofin N⊡ Q1	15 A	RL P	' <mark>ty L</mark> f	td I	Euro [®]	fins	Envi	ironn	nent	: Test	ting I	√Z Ltd
web: v email:	ww.eurofins.com.au	COM	Melbourne 6 Monterey Roa Dandenong Sou VIC 3175 Tel: +61 3 8564 NATA# 1261 Sit	Geelong Sydney prey Road 19/8 Lewalan Street 179 Mag nong South Grovedale Girrawee 75 VIC 3216 NSW 21/ 1 3 8564 5000 Tel: +61 3 8564 5000 Tel: +61 1261 Site# 1254 NATA# 1261 Site# 1254 NATA# 1		Sydney 179 Mago Girrawee NSW 214 Tel: +61 2 NATA# 12	r Canberr gowar Road Unit 1,2 ten Mitchell 145 ACT 29 1 2 9900 8400 Tel: +61 1261 Site# 18217			nberra it 1,2 Dacre Street chell T 2911 : +61 2 6113 8091			Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Tel: +61 7 3902 4600 NATA# 1261 Site# 20794			e 4 F F 0 794 f	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Tel: +61 2 4968 8448 44 NATA# 1261 Site# 25079			Perth 46-48 Banksia Road Welshpool 3 WA 6106 Tel: +61 8 6253 4444 NATA# 2377 Site# 2370)	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Tel: +64 9 526 45 51 IANZ# 1327		4 F C I	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: 0800 856 450 IANZ# 1290												
Co Ao	ompany Name: ddress:	Alliance Ge 10 Welder F Seven Hills NSW 2147	otechnical Road						Ore Re Phe Fax	der port one x:	No.: : #:		9 1 0	094 800 2 96	67 288 75 -	188 1888	3								Rec Due Prio Con	eive : ority: tact	ed: : : Na	me:		Ju Ar 3 Ti	ul 28 ug 2 Day halia	, 202 , 202 Par	22 1 22 rk-R	0:44 .oss	I AN	1		
Pr Pr	oject Name: oject ID:	ALEXANDF 14777	RIA NSW																					Eui	ofir	າs A	nal	ytica	al S	ervic	:es I	/ ana	age	r : A	ndr	ew E	Black	¢
	Sample Detail						Aluminium (filtered)	Ammonia (as N)	Asbestos in Water*	Barium (filtered)	Beryllium (filtered)	Biochemical Oxygen Demand (BOD-5 Day)	Cadmium (filtered)	Chloride	Chromium (filtered)	Cobalt (filtered)	Copper (filtered)	Enterococci (MPN)	Fluoride (Total)	Lead (liitered) Iron	Manganese (filtered)	MBAS Calculated as MW: 288	Mercury (filtered)	Molybdenum (filtered)	Nitrate (as N)	Nitrite (as N)	pH (at 25 °C)	Selenium (filtered)	Sulbhate (as SO4)	Total Suspended Solids Dried at 103 °C to	Turbidity	Vanadium (filtereu) Uranium (filtered)	Zinc (filtered)	Polycyclic Aromatic Hydrocarbons	Phenols (Speciated)	Eurofins Suite B15	BTEXN and Volatile TRH	BTEXN and Volatile TRH
Mell	bourne Laborato	ory - NATA # 1	261 Site # 12	54				х				х							x	х		x			X	x										:	x x	
Syd	ney Laboratory	- NATA # 1261	Site # 18217	,			х		x x	x	х)	xх	X	х	X	x x	:)	< x		х	x :	< 🗌		x	х	x	X	x	x :	хх	< X	X	x :	x x	x
Exte	ernal Laboratory	!		-														X)	x								
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB	ID																																
1	BH1	Jul 27, 2022		Water	S22-JI005	57060	Х	X	x x	X	Х	XX	x x	X	х	X	x x	X	Х	X >	< X	X	х	X X	K X	X	X	х	<u>x</u>	<u>x x</u>	X	<u>x</u> ;	<u>x x</u>	(X	X	x)	K _	
2	TRIP SPIKE	Jul 27, 2022		Trip Spike (solid)	S22-JI005	57061																																х
3	TRIP BLANK	Jul 27, 2022		Trip Blank (solid)	S22-JI005	57062																															x	
4	QAQC1	Jul 27, 2022		Water	S22-JI005	57063	Х		x	X	х)	хX		х	х	Х			>	< X		Х	x x	< 🗌			х			\square	x)	х Х	(X				
5	TRIP SPIKE LAB	Jul 27, 2022		Trip Spike (solid)	S22-JI005	57404																																х
Tes	t Counts						2	1	2 1	2	2	1 2	2 2	1	2	2	1 2	1	1	1 2	2 2	1	2	2	2 1	1	1	2	1	1 1	1	2 :	2 2	2 2	1	1	1 1	2

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA. If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	μg/L: micrograms per litre
ppm: parts per million	ppb: parts per billion	%: Percentage
org/100 mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100 mL: Most Probable Number of organisms per 100 millilitres

Terms

АРНА	American Public Health Association
coc	Chain of Custody
СР	Client Parent - QC was performed on samples pertaining to this report
CRM	Certified Reference Material (ISO17034) - reported as percent recovery.
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
LOR	Limit of Reporting.
LCS	Laboratory Control Sample - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
SRA	Sample Receipt Advice
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
ТВТО	Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment however free tributyltin was measured and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits.
TCLP	Toxicity Characteristic Leaching Procedure
TEQ	Toxic Equivalency Quotient or Total Equivalence
QSM	US Department of Defense Quality Systems Manual Version 5.4
US EPA	United States Environmental Protection Agency
WA DWER	Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank						
втех						
Benzene	mg/L	< 0.001		0.001	Pass	
Toluene	mg/L	< 0.001		0.001	Pass	
Ethylbenzene	mg/L	< 0.001		0.001	Pass	
m&p-Xylenes	mg/L	< 0.002		0.002	Pass	
o-Xylene	mg/L	< 0.001		0.001	Pass	
Xylenes - Total*	mg/L	< 0.003		0.003	Pass	
Method Blank		1	1	1		
Total Recoverable Hydrocarbons						
TRH C6-C9	mg/L	< 0.02		0.02	Pass	
TRH C10-C14	mg/L	< 0.05		0.05	Pass	
TRH C15-C28	mg/L	< 0.1		0.1	Pass	
TRH C29-C36	mg/L	< 0.1		0.1	Pass	
Naphthalene	mg/L	< 0.01		0.01	Pass	
TRH C6-C10	mg/L	< 0.02		0.02	Pass	
TRH >C10-C16	mg/L	< 0.05		0.05	Pass	
TRH >C16-C34	mg/L	< 0.1		0.1	Pass	
TRH >C34-C40	mg/L	< 0.1		0.1	Pass	
Method Blank		1	1 1	F		
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	mg/L	< 0.001		0.001	Pass	
Acenaphthylene	mg/L	< 0.001		0.001	Pass	
Anthracene	mg/L	< 0.001		0.001	Pass	
Benz(a)anthracene	mg/L	< 0.001		0.001	Pass	
Benzo(a)pyrene	mg/L	< 0.001		0.001	Pass	
Benzo(b&j)fluoranthene	mg/L	< 0.001		0.001	Pass	
Benzo(g.h.i)perylene	mg/L	< 0.001		0.001	Pass	
Benzo(k)fluoranthene	mg/L	< 0.001		0.001	Pass	
Chrysene	mg/L	< 0.001		0.001	Pass	
Dibenz(a.h)anthracene	mg/L	< 0.001		0.001	Pass	
Fluoranthene	mg/L	< 0.001		0.001	Pass	
Fluorene	mg/L	< 0.001		0.001	Pass	
Indeno(1.2.3-cd)pyrene	mg/L	< 0.001		0.001	Pass	
Naphthalene	mg/L	< 0.001		0.001	Pass	
Phenanthrene	mg/L	< 0.001		0.001	Pass	
Pyrene	mg/L	< 0.001		0.001	Pass	
Method Blank		1		1		
Organochlorine Pesticides						
Chlordanes - Total	mg/L	< 0.002		0.002	Pass	
4.4'-DDD	mg/L	< 0.0002		0.0002	Pass	
4.4'-DDE	mg/L	< 0.0002		0.0002	Pass	
4.4'-DDT	mg/L	< 0.0002		0.0002	Pass	
a-HCH	mg/L	< 0.0002		0.0002	Pass	
Aldrin	mg/L	< 0.0002		0.0002	Pass	
b-HCH	mg/L	< 0.0002		0.0002	Pass	
d-HCH	mg/L	< 0.0002		0.0002	Pass	
Dieldrin	mg/L	< 0.0002		0.0002	Pass	
Endosulfan I	mg/L	< 0.0002		0.0002	Pass	
Endosulfan II	mg/L	< 0.0002		0.0002	Pass	
Endosulfan sulphate	mg/L	< 0.0002		0.0002	Pass	
Endrin	mg/L	< 0.0002		0.0002	Pass	

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Endrin aldehyde	mg/L	< 0.0002		0.0002	Pass	
Endrin ketone	mg/L	< 0.0002		0.0002	Pass	
g-HCH (Lindane)	mg/L	< 0.0002		0.0002	Pass	
Heptachlor	mg/L	< 0.0002		0.0002	Pass	
Heptachlor epoxide	mg/L	< 0.0002		0.0002	Pass	
Hexachlorobenzene	mg/L	< 0.0002		0.0002	Pass	
Methoxychlor	mg/L	< 0.0002		0.0002	Pass	
Toxaphene	mg/L	< 0.005		0.005	Pass	
Method Blank		1				
Organophosphorus Pesticides	1					
Azinphos-methyl	mg/L	< 0.002		0.002	Pass	
Bolstar	mg/L	< 0.002		0.002	Pass	
Chlorfenvinphos	mg/L	< 0.02		0.02	Pass	
Chlorpyrifos	mg/L	< 0.002		0.002	Pass	
Chlorpyrifos-methyl	mg/L	< 0.002		0.002	Pass	
Coumaphos	mg/L	< 0.02		0.02	Pass	
Demeton-S	mg/L	< 0.002		0.002	Pass	
Demeton-O	mg/L	< 0.002		0.002	Pass	
Diazinon	mg/L	< 0.002		0.002	Pass	
Dichlorvos	mg/L	< 0.002		0.002	Pass	ļ
Dimethoate	mg/L	< 0.002		0.002	Pass	
Disulfoton	mg/L	< 0.002		0.002	Pass	
EPN	mg/L	< 0.002		0.002	Pass	
Ethion	mg/L	< 0.002		0.002	Pass	
Ethoprop	mg/L	< 0.002		0.002	Pass	
Ethyl parathion	mg/L	< 0.002		0.002	Pass	
Fenitrothion	mg/L	< 0.002		0.002	Pass	
Fensulfothion	mg/L	< 0.002		0.002	Pass	
Fenthion	mg/L	< 0.002		0.002	Pass	
Malathion	mg/L	< 0.002		0.002	Pass	
Merphos	mg/L	< 0.002		0.002	Pass	
Methyl parathion	mg/L	< 0.002		0.002	Pass	
Mevinphos	mg/L	< 0.002		0.002	Pass	
Monocrotophos	mg/L	< 0.002		0.002	Pass	
Naled	mg/L	< 0.002		0.002	Pass	
Omethoate	mg/L	< 0.02		0.02	Pass	
Phorate	mg/L	< 0.002		0.002	Pass	
Pirimiphos-methyl	mg/L	< 0.02		0.02	Pass	
Pyrazophos	mg/L	< 0.002		0.002	Pass	
Ronnel	mg/L	< 0.002		0.002	Pass	
	mg/L	< 0.002		0.002	Pass	
	mg/L	< 0.002		0.002	Pass	
	mg/L	< 0.002		0.002	Pass	
I richioronate	mg/L	< 0.002		0.002	Pass	
Method Blank		1	[[[
Arcelor 1016	ma/l	< 0.005		0.005	Booo	
Aroclor 1221	mg/L	< 0.005		0.005	Pass	
Arodor-1232	mg/L	< 0.005		0.005	Pace	
Aroclor-1242	ma/l			0.005	Pass	
Aroclor-1248	ma/l			0.005	Pass	
Aroclor-1254	mg/L			0.005	Pass	
Aroclor-1260	ma/l			0.005	Pace	
Total PCB*	ma/l			0.005	Page	
	i iig/∟	_ <u> </u>		0.000	1 435	1

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					-	
Phenols (Halogenated)						
2-Chlorophenol	mg/L	< 0.003		0.003	Pass	
2.4-Dichlorophenol	mg/L	< 0.003		0.003	Pass	
2.4.5-Trichlorophenol	mg/L	< 0.01		0.01	Pass	
2.4.6-Trichlorophenol	mg/L	< 0.01		0.01	Pass	
2.6-Dichlorophenol	mg/L	< 0.003		0.003	Pass	
4-Chloro-3-methylphenol	mg/L	< 0.01		0.01	Pass	
Pentachlorophenol	mg/L	< 0.01		0.01	Pass	
Tetrachlorophenols - Total	mg/L	< 0.03		0.03	Pass	
Method Blank		1 1		1	1	
Phenols (non-Halogenated)						
2-Cyclohexyl-4.6-dinitrophenol	mg/L	< 0.1		0.1	Pass	
2-Methyl-4.6-dinitrophenol	mg/L	< 0.03		0.03	Pass	
2-Nitrophenol	mg/L	< 0.01		0.01	Pass	
2.4-Dimethylphenol	mg/L	< 0.003		0.003	Pass	
2.4-Dinitrophenol	mg/L	< 0.03		0.03	Pass	
2-Methylphenol (o-Cresol)	mg/L	< 0.003		0.003	Pass	
3&4-Methylphenol (m&p-Cresol)	mg/L	< 0.006		0.006	Pass	
4-Nitrophenol	mg/L	< 0.03		0.03	Pass	
Dinoseb	mg/L	< 0.1		0.1	Pass	
Phenol	mg/L	< 0.003		0.003	Pass	
Total Non-Halogenated Phenol*	mg/L	< 0		0.1	Pass	
Method Blank		1 1		I	1	
Ammonia (as N)	mg/L	< 0.01		0.01	Pass	
Conductivity (at 25 °C)	uS/cm	< 10		10	Pass	
Fluoride (Total)	mg/L	< 0.5		0.5	Pass	
MBAS Calculated as MW: 288	mg/L	< 0.2		0.2	Pass	
Nitrate (as N)	mg/L	< 0.02		0.02	Pass	
Nitrite (as N)	mg/L	< 0.02		0.02	Pass	
Sulphate (as SO4)	mg/L	< 2		2	Pass	
Total Suspended Solids Dried at 103 °C to 105 °C	mg/L	< 5		5	Pass	
Turbidity	NTU	< 1		1	Pass	
Method Blank		1 1				
Heavy Metals						
Aluminium (filtered)	mg/L	< 0.05		0.05	Pass	
Arsenic (filtered)	mg/L	< 0.001		0.001	Pass	
Barium (filtered)	mg/L	< 0.02		0.02	Pass	
Beryllium (filtered)	mg/L	< 0.001		0.001	Pass	
Boron (filtered)	mg/L	< 0.05		0.05	Pass	
Cadmium (filtered)	mg/L	< 0.0002		0.0002	Pass	
Chromium (filtered)	mg/L	< 0.001		0.001	Pass	
Cobalt (filtered)	mg/L	< 0.001		0.001	Pass	
Copper (filtered)	mg/L	< 0.001		0.001	Pass	
Iron	mg/L	< 0.05		0.05	Pass	
Lead (filtered)	mg/L	< 0.001		0.001	Pass	
Manganese (filtered)	mg/L	< 0.005		0.005	Pass	
Mercury (filtered)	mg/L	< 0.0001		0.0001	Pass	
Molybdenum (filtered)	mg/L	< 0.005		0.005	Pass	
Nickel (filtered)	mg/L	< 0.001		0.001	Pass	
Selenium (filtered)	mg/L	< 0.001		0.001	Pass	
Uranium (filtered)	mg/L	< 0.005		0.005	Pass	
Vanadium (filtered)	mg/L	< 0.005		0.005	Pass	
Zinc (filtered)	mg/L	< 0.005		0.005	Pass	

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
LCS - % Recovery		1		.		
BTEX						
Benzene	%	107		70-130	Pass	
Toluene	%	109		70-130	Pass	
Ethylbenzene	%	115		70-130	Pass	
m&p-Xylenes	%	112		70-130	Pass	
o-Xylene	%	113		70-130	Pass	
Xylenes - Total*	%	112		70-130	Pass	
LCS - % Recovery			I			
Total Recoverable Hydrocarbons						
TRH C6-C9	%	104		70-130	Pass	
TRH C10-C14	%	71		70-130	Pass	
Naphthalene	%	112		70-130	Pass	
TRH C6-C10	%	104		70-130	Pass	
TRH >C10-C16	%	70		70-130	Pass	
LCS - % Recovery			I I	1		
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	%	92		70-130	Pass	
Acenaphthylene	%	80		70-130	Pass	
Anthracene	%	75		70-130	Pass	
Benz(a)anthracene	%	94		70-130	Pass	
Benzo(a)pyrene	%	97		70-130	Pass	
Benzo(b&j)fluoranthene	%	73		70-130	Pass	
Benzo(g.h.i)perylene	%	71		70-130	Pass	
Benzo(k)fluoranthene	%	87		70-130	Pass	
Chrysene	%	114		70-130	Pass	
Dibenz(a.h)anthracene	%	93		70-130	Pass	
Fluoranthene	%	84		70-130	Pass	
Fluorene	%	104		70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	90		70-130	Pass	
Naphthalene	%	70		70-130	Pass	
Phenanthrene	%	77		70-130	Pass	
Pyrene	%	90		70-130	Pass	
LCS - % Recovery			· · · · ·			
Organochlorine Pesticides						
Chlordanes - Total	%	77		70-130	Pass	
4.4'-DDD	%	94		70-130	Pass	
4.4'-DDE	%	87		70-130	Pass	
4.4'-DDT	%	110		70-130	Pass	
a-HCH	%	77		70-130	Pass	
Aldrin	%	73		70-130	Pass	
b-HCH	%	73		70-130	Pass	
d-HCH	%	94		70-130	Pass	
Dieldrin	%	91		70-130	Pass	
Endosulfan I	%	100		70-130	Pass	
	%	78		70-130	Pass	
Endosultan sulphate	%	104		70-130	Pass	
Endrin	%	112		70-130	Pass	
Endrin ketone	%	81		70-130	Pass	
g-HCH (Lindane)	%	107		70-130	Pass	
Heptachlor	%	85		70-130	Pass	
Heptachlor epoxide	%	77	<u> </u>	/0-130	Pass	
Hexacniorobenzene	%	<u> </u>		70-130	Pass	
Methoxychlor	%	81		70-130	Pass	

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
LCS - % Recovery		1	1	1	r	
Organophosphorus Pesticides						
Diazinon	%	115		70-130	Pass	
Dimethoate	%	71		70-130	Pass	
Ethion	%	96		70-130	Pass	
Fenitrothion	%	81		70-130	Pass	
Methyl parathion	%	96		70-130	Pass	
Mevinphos	%	118		70-130	Pass	
LCS - % Recovery		1	1 1	1		
Polychlorinated Biphenyls						
Aroclor-1016	%	85		70-130	Pass	
Aroclor-1260	%	74		70-130	Pass	
LCS - % Recovery		1	1	T		
Phenols (Halogenated)						
2-Chlorophenol	%	57		25-140	Pass	
2.4-Dichlorophenol	%	97		25-140	Pass	
2.4.5-Trichlorophenol	%	69		25-140	Pass	
2.4.6-Trichlorophenol	%	92		25-140	Pass	
2.6-Dichlorophenol	%	84		25-140	Pass	
4-Chloro-3-methylphenol	%	82		25-140	Pass	
Pentachlorophenol	%	87		25-140	Pass	
Tetrachlorophenols - Total	%	87		25-140	Pass	
LCS - % Recovery						
Phenols (non-Halogenated)						
2-Cyclohexyl-4.6-dinitrophenol	%	105		25-140	Pass	
2-Methyl-4.6-dinitrophenol	%	100		25-140	Pass	
2-Nitrophenol	%	92		25-140	Pass	
2.4-Dimethylphenol	%	68		25-140	Pass	
2.4-Dinitrophenol	%	85		25-140	Pass	
2-Methylphenol (o-Cresol)	%	67		25-140	Pass	
3&4-Methylphenol (m&p-Cresol)	%	60		25-140	Pass	
4-Nitrophenol	%	77		25-140	Pass	
Dinoseb	%	110		25-140	Pass	
Phenol	%	44		25-140	Pass	
LCS - % Recovery						
Ammonia (as N)	%	110		70-130	Pass	
Chloride	%	108		70-130	Pass	
Conductivity (at 25 °C)	%	97		70-130	Pass	
Fluoride (Total)	%	117		70-130	Pass	
MBAS Calculated as MW: 288	%	96		70-130	Pass	
Nitrate (as N)	%	108		70-130	Pass	
Nitrite (as N)	%	98		70-130	Pass	
Sulphate (as SO4)	%	108		70-130	Pass	
Total Suspended Solids Dried at 103 °C to 105 °C	%	101		70-130	Pass	
Turbidity	%	99		70-130	Pass	
LCS - % Recovery				•		
Heavy Metals						
Aluminium (filtered)	%	99		80-120	Pass	
Arsenic (filtered)	%	98		80-120	Pass	
Barium (filtered)	%	96		80-120	Pass	
Beryllium (filtered)	%	94		80-120	Pass	
Boron (filtered)	%	96		80-120	Pass	
Cadmium (filtered)	%	94		80-120	Pass	
Chromium (filtered)	%	98		80-120	Pass	

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Cobalt (filtered)			%	98		80-120	Pass	
Copper (filtered)			%	97		80-120	Pass	
Iron			%	103		80-120	Pass	
Lead (filtered)			%	92		80-120	Pass	
Manganese (filtered)			%	96		80-120	Pass	
Mercury (filtered)			%	103		80-120	Pass	
Molybdenum (filtered)			%	98		80-120	Pass	
Nickel (filtered)			%	98		80-120	Pass	
Selenium (filtered)			%	93		80-120	Pass	
Uranium (filtered)			%	97		80-120	Pass	
Vanadium (filtered)			%	100		80-120	Pass	
Zinc (filtered)	r		%	97		80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery								
ВТЕХ				Result 1				
Benzene	N22-JI0054936	NCP	%	116		70-130	Pass	İ
Toluene	N22-JI0054936	NCP	%	102		70-130	Pass	
Ethylbenzene	N22-JI0054936	NCP	%	104		70-130	Pass	
m&p-Xylenes	N22-JI0054936	NCP	%	109		70-130	Pass	
o-Xylene	N22-JI0054936	NCP	%	103		70-130	Pass	
Xylenes - Total*	N22-JI0054936	NCP	%	107		70-130	Pass	İ
Spike - % Recovery								
Total Recoverable Hydrocarbons				Result 1				İ
TRH C6-C9	N22-JI0054936	NCP	%	110		70-130	Pass	
TRH C10-C14	N22-JI0049024	NCP	%	106		70-130	Pass	İ
Naphthalene	N22-JI0054936	NCP	%	109		70-130	Pass	
TRH C6-C10	N22-JI0054936	NCP	%	108		70-130	Pass	
TRH >C10-C16	N22-JI0049024	NCP	%	109		70-130	Pass	
Spike - % Recovery				1	1	Ī		
				Result 1				
Ammonia (as N)	M22-JI0057135	NCP	%	112		70-130	Pass	
Chloride	S22-JI0057060	CP	%	72		70-130	Pass	
Fluoride (Total)	B22-JI0053748	NCP	%	80		70-130	Pass	
MBAS Calculated as MW: 288	S22-JI0057060	CP	%	88		70-130	Pass	
Nitrate (as N)	B22-JI0050300	NCP	%	89		70-130	Pass	
Nitrite (as N)	N22-JI0060173	NCP	%	82		70-130	Pass	
Sulphate (as SO4)	S22-JI0057060	CP	%	100		70-130	Pass	
Total Suspended Solids Dried at 103 °C to 105 °C	S22-JI0055194	NCP	%	96		70-130	Pass	
Spike - % Recovery								
Heavy Metals				Result 1				
Aluminium (filtered)	S22-JI0054986	NCP	%	95		75-125	Pass	
Arsenic (filtered)	S22-JI0054986	NCP	%	94		75-125	Pass	
Barium (filtered)	S22-JI0054986	NCP	%	95		75-125	Pass	
Beryllium (filtered)	S22-JI0054986	NCP	%	92		75-125	Pass	
Boron (filtered)	S22-JI0054986	NCP	%	91		75-125	Pass	
Cadmium (filtered)	S22-JI0054986	NCP	%	94		75-125	Pass	
Chromium (filtered)	S22-JI0054986	NCP	%	95		75-125	Pass	
Cobalt (filtered)	S22-JI0054986	NCP	%	96		75-125	Pass	
Copper (filtered)	S22-JI0054986	NCP	%	95		75-125	Pass	
Iron	M22-JI0059285	NCP	%	83		75-125	Pass	ļ
Lead (filtered)	S22-JI0054986	NCP	%	91		75-125	Pass	ļ
Manganese (filtered)	S22-JI0054986	NCP	%	94		75-125	Pass	
Mercury (filtered)	S22-JI0054986	NCP	%	102		75-125	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Molybdenum (filtered)	S22-JI0054986	NCP	%	95			75-125	Pass	
Nickel (filtered)	S22-JI0054986	NCP	%	95			75-125	Pass	
Selenium (filtered)	S22-JI0054986	NCP	%	92			75-125	Pass	
Uranium (filtered)	S22-JI0054986	NCP	%	96			75-125	Pass	
Vanadium (filtered)	S22-JI0054986	NCP	%	97			75-125	Pass	
Zinc (filtered)	S22-JI0054986	NCP	%	96			75-125	Pass	
Test	I ah Samnle ID	QA	Units	Result 1			Acceptance	Pass	Qualifying
	Lab Gample ID	Source	Units	Result 1			Limits	Limits	Code
Duplicate							1	[
BTEX				Result 1	Result 2	RPD		_	
Benzene	N22-JI0054935	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
	N22-JI0054935	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Ethylbenzene	N22-JI0054935	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
m&p-Xylenes	N22-JI0054935	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
o-Xylene	N22-JI0054935	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Xylenes - Total*	N22-JI0054935	NCP	mg/L	< 0.003	< 0.003	<1	30%	Pass	
				D 1 1					
Total Recoverable Hydrocarbons				Result 1	Result 2	RPD			
TRH C6-C9	N22-JI0054935	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
TRH C10-C14	R22-JI0056745	NCP	mg/L	0.08	0.16	67	30%	Fail	Q15
TRH C15-C28	R22-JI0056745	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH C29-C36	R22-JI0056745	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Naphthalene	N22-JI0054935	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
TRH C6-C10	N22-JI0054935	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
TRH >C10-C16	R22-JI0056745	NCP	mg/L	0.10	0.17	53	30%	Fail	Q15
TRH >C16-C34	R22-JI0056745	NCP	mg/L	0.1	< 0.1	39	30%	Fail	Q15
1RH >C34-C40	R22-JI0056745	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate				Devilled	Devilio				
Assessment these		NOD	···· •· //	Result	Result 2	RPD	2001	Dees	
Acenaphthelene	S22-JI0045451	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Acenaphthylene	S22-JI0045451	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Anthracene	S22-JI0045451	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benze(a)anthracene	S22-JI0045451	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(b&i)fluoronthono	S22-JI0045451	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(d bi)pondono	S22-JI0045451	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(k)fluoropthono	S22-JI0045451		mg/L	< 0.001	< 0.001	<1	30%	Pass	
Chrysono	S22-JI0045451		mg/L	< 0.001	< 0.001		30%	Pass	
	S22-JI0045451		mg/L	< 0.001	< 0.001		30%	Pass	
Fluoranthene	S22-JI0045451	NCP	mg/L	< 0.001	< 0.001		30%	Dass	
Fluorene	S22-JI0045451	NCP	mg/L	< 0.001	< 0.001		30%	Dass	
Indeno(1.2.3-cd)pyrene	S22-110045451	NCP	mg/L	< 0.001	< 0.001	~1	30%	Pass	
Nanhthalene	S22-110045451	NCP	mg/L	< 0.001	< 0.001	~1	30%	Pass	
Phenanthrene	S22-110045451	NCP	mg/L	< 0.001	< 0.001	~1	30%	Pass	
Pyrene	S22-110045451	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Dunlicate	022 010040401		iiig/E	<u> </u>	< 0.001		0070	1 455	
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	S22-110057060	CP	ma/l	< 0.002	< 0.002	<1	30%	Pass	
	S22-110057060	CP	ma/l	< 0.002	< 0.002	<1	30%	Pass	
4.4'-DDF	S22-JI0057060	CP	ma/l	< 0.0002	< 0.0002	<1	30%	Pass	
4.4'-DDT	S22-JI0057060	CP	ma/l	< 0.0002	< 0.0002	<1	30%	Pass	
а-НСН	S22-JI0057060	CP	ma/l	< 0.0002	< 0.0002	<1	30%	Pass	
Aldrin	S22-JI0057060	CP	ma/l	< 0.0002	< 0.0002	<1	30%	Pass	
b-HCH	S22-JI0057060	CP	ma/l	< 0.0002	< 0.0002	<1	30%	Pass	
d-HCH	S22-JI0057060	CP	ma/l	< 0.0002	< 0.0002	<1	30%	Pass	
L									·

Duplicate				-					
Organochlorine Pesticides				Result 1	Result 2	RPD			
Dieldrin	S22-JI0057060	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Endosulfan I	S22-JI0057060	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Endosulfan II	S22-JI0057060	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Endosulfan sulphate	S22-JI0057060	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Endrin	S22-JI0057060	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Endrin aldehyde	S22-JI0057060	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Endrin ketone	S22-JI0057060	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
g-HCH (Lindane)	S22-JI0057060	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Heptachlor	S22-JI0057060	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Heptachlor epoxide	S22-JI0057060	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Hexachlorobenzene	S22-JI0057060	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Methoxychlor	S22-JI0057060	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Toxaphene	S22-JI0057060	CP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Duplicate									
Organophosphorus Pesticides				Result 1	Result 2	RPD			
Azinphos-methyl	S22-JI0057060	CP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Bolstar	S22-JI0057060	CP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Chlorfenvinphos	S22-JI0057060	CP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Chlorpyrifos	S22-JI0057060	CP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Chlorpyrifos-methyl	S22-JI0057060	СР	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Coumaphos	S22-JI0057060	CP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Demeton-S	S22-JI0057060	СР	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Demeton-O	S22-JI0057060	CP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Diazinon	S22-JI0057060	CP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Dichlorvos	S22-JI0057060	CP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Dimethoate	S22-JI0057060	CP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Disulfoton	S22-JI0057060	CP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
EPN	S22-JI0057060	CP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Ethion	S22-JI0057060	CP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Ethoprop	S22-JI0057060	CP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Ethyl parathion	S22-JI0057060	СР	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Fenitrothion	S22-JI0057060	СР	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Fensulfothion	S22-JI0057060	CP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Fenthion	S22-JI0057060	CP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Malathion	S22-JI0057060	CP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Merphos	S22-JI0057060	CP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Methyl parathion	S22-JI0057060	CP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Mevinphos	S22-JI0057060	CP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Monocrotophos	S22-JI0057060	CP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Naled	S22-JI0057060	CP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Omethoate	S22-JI0057060	CP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Phorate	S22-JI0057060	CP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Pirimiphos-methyl	S22-JI0057060	CP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Pyrazophos	S22-JI0057060	CP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Ronnel	S22-JI0057060	CP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Terbufos	S22-JI0057060	CP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Tetrachlorvinphos	S22-JI0057060	CP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Tokuthion	S22-JI0057060	CP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Trichloronate	S22-JI0057060	CP	mg/L	< 0.002	< 0.002	<1	30%	Pass	

Duplicate									
Polychlorinated Biphenyls			-	Result 1	Result 2	RPD			
Aroclor-1016	S22-JI0057060	CP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Aroclor-1221	S22-JI0057060	CP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Aroclor-1232	S22-JI0057060	CP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Aroclor-1242	S22-JI0057060	CP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Aroclor-1248	S22-JI0057060	CP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Aroclor-1254	S22-JI0057060	CP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Aroclor-1260	S22-JI0057060	CP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Total PCB*	S22-JI0057060	CP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Duplicate									
Phenols (Halogenated)				Result 1	Result 2	RPD			
2-Chlorophenol	S22-JI0057060	CP	mg/L	< 0.003	< 0.003	<1	30%	Pass	
2.4-Dichlorophenol	S22-JI0057060	CP	mg/L	< 0.003	< 0.003	<1	30%	Pass	
2.4.5-Trichlorophenol	S22-JI0057060	CP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
2.4.6-Trichlorophenol	S22-JI0057060	CP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
2.6-Dichlorophenol	S22-JI0057060	CP	mg/L	< 0.003	< 0.003	<1	30%	Pass	
4-Chloro-3-methylphenol	S22-JI0057060	CP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Pentachlorophenol	S22-JI0057060	CP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Tetrachlorophenols - Total	S22-JI0057060	CP	mg/L	< 0.03	< 0.03	<1	30%	Pass	
Duplicate		•							
Phenols (non-Halogenated)				Result 1	Result 2	RPD			
2-Cyclohexyl-4.6-dinitrophenol	S22-JI0057060	CP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
2-Methyl-4.6-dinitrophenol	S22-JI0057060	CP	mg/L	< 0.03	< 0.03	<1	30%	Pass	
2-Nitrophenol	S22-JI0057060	CP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
2.4-Dimethylphenol	S22-JI0057060	CP	mg/L	< 0.003	< 0.003	<1	30%	Pass	
2.4-Dinitrophenol	S22-JI0057060	CP	mg/L	< 0.03	< 0.03	<1	30%	Pass	
2-Methylphenol (o-Cresol)	S22-JI0057060	CP	mg/L	< 0.003	< 0.003	<1	30%	Pass	
3&4-Methylphenol (m&p-Cresol)	S22-JI0057060	CP	mg/L	< 0.006	< 0.006	<1	30%	Pass	
4-Nitrophenol	S22-JI0057060	CP	mg/L	< 0.03	< 0.03	<1	30%	Pass	
Dinoseb	S22-JI0057060	CP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Phenol	S22-JI0057060	CP	mg/L	< 0.003	< 0.003	<1	30%	Pass	
Duplicate				•					
				Result 1	Result 2	RPD			
Ammonia (as N)	S22-JI0057060	CP	mg/L	18	18	<1	30%	Pass	
Chloride	S22-JI0057060	CP	mg/L	3.4	3.9	15	30%	Pass	
Conductivity (at 25 °C)	S22-JI0055511	NCP	uS/cm	130	130	4.0	30%	Pass	
Fluoride (Total)	M22-JI0057234	NCP	mg/L	< 0.5	< 0.5	<1	30%	Pass	
MBAS Calculated as MW: 288	M22-Au0001414	NCP	mg/L	0.4	0.3	11	30%	Pass	
Nitrate (as N)	S22-JI0057060	CP	ma/L	< 0.02	< 0.02	<1	30%	Pass	
Nitrite (as N)	S22-JI0057060	CP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Sulphate (as SO4)	S22-JI0057060	CP	mg/L	5.0	5.9	16	30%	Pass	
Total Suspended Solids Dried at	S22- 110056706	NCP	ma/l	72	68	57	30%	Pass	
Turbidity	S22-110057684	NCP		- 1	1	-1	30%	Pass	
	022 010007 004		NIO				3070	1 433	
Heavy Metals				Result 1	Result 2	PPD			
Aluminium (filtered)	N22- 110054960		ma/l			-1	30%	Pass	
Arsonic (filtered)	N22-110054900		ma/l	0.00	0.00	~1	30%	Pass	
Barium (filtered)	N22-110054900		mg/L	0.000	0.000	17	30%	Daca	
Boron (filtered)	N22-110054900		mg/L	1 1	1 1	-1./	30%	Pace	
Cadmium (filtorod)	N22-110054900	NCD	mg/L			<1 21	20%	Pass	
Chromium (filtered)	N22 10054900		mg/L	< 0.0002	< 0.0002	<1	20%	Pass	
Cobalt (filtorad)	N22 10054960		ma/l		< 0.001	<1	20%	Pass	
Copper (filtered)	N22-JIUU34960		mg/L		< 0.001	< I 1 F	30%	Pass	
	M22-JIUU54960		mg/L	0.004	0.004	1.5	30%	Pass	
	IVIZZ-JIUU59285	NCP	ing/L	2.0	2.1	<1	30%	Pass	

Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Lead (filtered)	N22-JI0054962	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Manganese (filtered)	N22-JI0054960	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Mercury (filtered)	N22-JI0054960	NCP	mg/L	0.0001	0.0001	10	30%	Pass	
Molybdenum (filtered)	N22-JI0054960	NCP	mg/L	0.11	0.11	2.0	30%	Pass	
Nickel (filtered)	N22-JI0054960	NCP	mg/L	0.004	0.004	2.5	30%	Pass	
Selenium (filtered)	N22-JI0054960	NCP	mg/L	0.008	0.006	21	30%	Pass	
Uranium (filtered)	N22-JI0054960	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Vanadium (filtered)	N22-JI0054960	NCP	mg/L	0.008	0.009	12	30%	Pass	
Zinc (filtered)	N22-JI0054960	NCP	mg/L	0.005	< 0.005	3.7	30%	Pass	

Comments

All micro analysed by; Eurofins Food Testing; accreditation number 20293; report reference AR-22-NV-009894-01

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	No
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.

N07 Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

Q09 The Surrogate recovery is outside of the recommended acceptance criteria due to matrix interference. Acceptance criteria were met for all other QC

Q15 The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised by:

Andrew Black Analytical Services Manager Gabriele Cordero Senior Analyst-Inorganic Gabriele Cordero Senior Analyst-Metal Mary Makarios Senior Analyst-Metal Roopesh Rangarajan Senior Analyst-Organic Senior Analyst-Volatile Roopesh Rangarajan Ryan Phillips Senior Analyst-Inorganic Saveed Abu Senior Analyst-Asbestos Scott Beddoes Senior Analyst-Inorganic

Glenn Jackson General Manager

Final Report – this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Alliance Geotechnical 10 Welder Road Seven Hills NSW 2147

Attention:

Thalia Park-Ross

Report Project name Project ID Received Date 909467-S ALEXANDRIA NSW 14777 Jul 28, 2022

Client Sample ID			TRIP SPIKE	TRIP BLANK
Sample Matrix			Trip Spike (solid)	Trip Blank (solid)
Eurofins Sample No.			S22-JI0057061	S22-JI0057062
Date Sampled			Jul 27, 2022	Jul 27, 2022
Test/Reference	LOR	Unit		
TRH C6-C10	1	%	110	-
Total Recoverable Hydrocarbons				
Naphthalene	1	%	110	-
TRH C6-C9	1	%	110	-
BTEX				
Benzene	1	%	100	-
Ethylbenzene	1	%	110	-
m&p-Xylenes	1	%	110	-
o-Xylene	1	%	110	-
Toluene	1	%	110	-
Xylenes - Total	1	%	110	-
4-Bromofluorobenzene (surr.)	1	%	119	-
Total Recoverable Hydrocarbons				
TRH C6-C9	20	mg/kg	-	< 20
Naphthalene ^{N02}	0.5	mg/kg	-	< 0.5
TRH C6-C10	20	mg/kg	-	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	-	< 20
BTEX				
Benzene	0.1	mg/kg	-	< 0.1
Toluene	0.1	mg/kg	-	< 0.1
Ethylbenzene	0.1	mg/kg	-	< 0.1
m&p-Xylenes	0.2	mg/kg	-	< 0.2
o-Xylene	0.1	mg/kg	-	< 0.1
Xylenes - Total*	0.3	mg/kg	-	< 0.3
4-Bromofluorobenzene (surr.)	1	%	-	98

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Jul 28, 2022	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons	Sydney	Jul 28, 2022	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Sydney	Jul 28, 2022	14 Days
- Method: LTM-ORG-2010 BTEX and Volatile TRH			

•		C	Eurofins Env	ironment Testi	ng Australia P	ty Ltd																			Eu AB	I <mark>rofi</mark> r N⊡ Q1	15 A	RL P	ty Lt	.d E			Envi	ironm	ient	Testi	ng N	Z Ltd
web: web: web: web: web: web: web: web:	ww.eurofins.com.au	TINS s.com	Melbourne 6 Monterey Roa Dandenong Sou VIC 3175 Tel: +61 3 8564 NATA# 1261 Sit	Geelong d 19/8 Lev th Groveda VIC 321 5000 Tel: +61 e# 1254 NATA#	y valan Street ile 6 3 8564 5000 1261 Site# 1254	Sydney 179 Mago Girraweer NSW 214 Tel: +61 2 NATA# 12	owar n 5 2 990 261 S	Road 0 840 Site# 1)0 18217	Canl Unit Mitch ACT Tel:	2911 1,2 D 1ell 2911 +61 2	acre S 6113	Street 8091		Brisb 1/21 \$ Murai QLD Tel: + NATA	oane Small rrie 4172 61 7 A# 12	wood 2 3902 61 Sit	4600 4600	e /) 0794	Newca 4/52 Ir Mayfie PO Bo Tel: +6 NATA	astle Idustr Id Ea x 60 \ \$1 2 4 # 126	ial Dri st NS Wickh 968 8 1 Site	ve W 23 am 2 448 # 250	04 293)79	Perth Auckland 46-48 Banksia Road 35 O'Rorke Welshpool Penrose, 3 WA 6106 Auckland 1 Tel: +61 8 6253 4444 Tel: +64 4 WATA# 2377 Site# 2370 IANZ# 132		and Christchurch torke Road 43 Detroit Drive se, Rolleston, and 1061 Christchurch 767 54 9 526 45 51 Tel: 0800 856 45 1327 IANZ# 1290			/e 7675 450								
Co	ompany Name: ddress:	Alliance Ge 10 Welder F Seven Hills NSW 2147	otechnical Road						Ore Re Ph Fa	der port one x:	No.: : #:		9 1 0	094 800 2 96	67 288 375 -	3 188 1888	3								Rec Due Prio Con	eive : ority: ntact	ed: : t Na	me:		Ju Au 3 Tł	ll 28, Jg 2, Day nalia	202 202 Parl	22 1 22 k-Ri	0:44 oss	AM			
Pr Pr	oject Name: oject ID:	ALEXANDR 14777	RIA NSW																					Eu	rofiı	ns A	nal	ytica	al Se	ərvic	es N	lana	ager	r:Ar	ndre	∌w B	lack	
		S	ample Detail				Aluminium (filtered)	Ammonia (as N)	Asbestos in Water* Arsenic (filtered)	Barium (filtered)	Beryllium (filtered)	Biochemical Oxygen Demand (BOD-5 Day)	Cadmium (filtered)	Chloride	Chromium (filtered)	Cobalt (filtered)	Copper (Tillered) Conductivity (at 25 °C)	Enterococci (MPN)	Fluoride (Total)	Iron	Manganese (filtered)	MBAS Calculated as MW: 288	Mercury (filtered)	Molybdenum (filtered)	Nitrate (as N) Nickel (filtered)	Nitrite (as N)	pH (at 25 °C)	Selenium (filtered)	Iotal Coliforms (MPN) Sulphate (as SO4)	Total Suspended Solids Dried at 103 °C to	Turbidity	Vanadium (filtered)	Zinc (filtered)	Polycyclic Aromatic Hydrocarbons	Phenols (Speciated)	Eurofins Suite B1	BTEXN and Volatile TRH	BTEXN and Volatile TRH
Mel	bourne Laborate	ory - NATA # 1	261 Site # 12	54				Х				Х							Х	Х		X			X	(X					\square		Τ			X	X	
Syd	ney Laboratory	- NATA # 1261	Site # 18217	,			х		x x	X	х)	xх	X	х	х	x >	<)	x x	:	х	х	х		X	х	х	X	x :	x x	< x	(X	х	x x	X	X
Exte	ernal Laboratory	/																X											X	<								
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB	ID																																
1	BH1	Jul 27, 2022		Water	S22-JI005	57060	Х	Х	х х	X	Х	X>	хX	X	Х	Х	X >	(X	X	XX	x x	X	Х	Х	хх	(X	X	Х	хΧ	(X	X	x x	(X	: x	Х	x x		
2	TRIP SPIKE	Jul 27, 2022		Trip Spike (solid)	S22-JI005	57061																																х
3	TRIP BLANK	Jul 27, 2022		Trip Blank (solid)	S22-JI005	57062																															х	
4	QAQC1	Jul 27, 2022		Water	S22-JI005	57063	х		х	X	х)	хΧ		х	Х	>	<)	x x		Х	х	х			х				х х	(X	: x				
5	TRIP SPIKE LAB	Jul 27, 2022		Trip Spike (solid)	S22-JI005	57404																																х
Tes	t Counts						2	1	2 1	2	2	1 2	2 2	1	2	2	1 2	2 1	1	1	2 2	1	2	2	2 1	1	1	2	1 1	1	1	2 2	2 2	2	1	1 1	1	2

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA. If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	μg/L: micrograms per litre
ppm: parts per million	ppb: parts per billion	%: Percentage
org/100 mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100 mL: Most Probable Number of organisms per 100 millilitres

Terms

APHA	American Public Health Association
coc	Chain of Custody
СР	Client Parent - QC was performed on samples pertaining to this report
CRM	Certified Reference Material (ISO17034) - reported as percent recovery.
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
LOR	Limit of Reporting.
LCS	Laboratory Control Sample - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
SRA	Sample Receipt Advice
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
твто	Tributyltin oxide (<i>bis</i> -tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment however free tributyltin was measured and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits.
TCLP	Toxicity Characteristic Leaching Procedure
TEQ	Toxic Equivalency Quotient or Total Equivalence
QSM	US Department of Defense Quality Systems Manual Version 5.4
US EPA	United States Environmental Protection Agency
WA DWER	Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Method Blank									
Total Recoverable Hydrocarbons									
TRH C6-C9			mg/kg	< 20			20	Pass	
Naphthalene			mg/kg	< 0.5			0.5	Pass	
TRH C6-C10			mg/kg	< 20			20	Pass	
Method Blank									
BTEX									
Benzene			mg/kg	< 0.1			0.1	Pass	
Toluene			mg/kg	< 0.1			0.1	Pass	
Ethylbenzene			mg/kg	< 0.1			0.1	Pass	
m&p-Xylenes			mg/kg	< 0.2			0.2	Pass	
o-Xylene			mg/kg	< 0.1			0.1	Pass	
Xylenes - Total*			mg/kg	< 0.3			0.3	Pass	
LCS - % Recovery								-	
Total Recoverable Hydrocarbons									
TRH C6-C9			%	89			70-130	Pass	
Naphthalene			%	98			70-130	Pass	
TRH C6-C10			%	89			70-130	Pass	
LCS - % Recovery									
BTEX									
Benzene			%	96			70-130	Pass	
Toluene			%	100			70-130	Pass	
Ethylbenzene			%	95			70-130	Pass	
m&p-Xylenes			%	90			70-130	Pass	
o-Xylene			%	98			70-130	Pass	
Xylenes - Total*			%	93			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery				1			1		
Total Recoverable Hydrocarbons	i			Result 1					
TRH C6-C9	S22-JI0047492	NCP	%	90			70-130	Pass	
Naphthalene	S22-JI0047492	NCP	%	82			70-130	Pass	
TRH C6-C10	S22-JI0047492	NCP	%	90			70-130	Pass	
Spike - % Recovery				1			1		
BTEX	r			Result 1					
Benzene	S22-JI0047492	NCP	%	96			70-130	Pass	
Toluene	S22-JI0047492	NCP	%	97			70-130	Pass	
Ethylbenzene	S22-JI0047492	NCP	%	94			70-130	Pass	
m&p-Xylenes	S22-JI0047492	NCP	%	91			70-130	Pass	
o-Xylene	S22-JI0047492	NCP	%	96			70-130	Pass	
Xylenes - Total*	S22-JI0047492	NCP	%	93			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate							1		
Total Recoverable Hydrocarbons				Result 1	Result 2	RPD			
TRH C6-C9	S22-JI0058255	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
Naphthalene	S22-JI0058255	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S22-JI0058255	NCP	mg/kg	< 20	< 20	<1	30%	Pass	

Duplicate									
BTEX	_			Result 1	Result 2	RPD			
Benzene	S22-JI0058255	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S22-JI0058255	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S22-JI0058255	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S22-JI0058255	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S22-JI0058255	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total*	S22-JI0058255	NCP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	No
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

N02 Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.

Authorised by:

Andrew Black Roopesh Rangarajan Analytical Services Manager Senior Analyst-Volatile

Glenn Jackson General Manager

Final Report – this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

APPENDIX C – Data Quality Indicator (DQI) Assessment

Completeness DQI			
Field Considerations	Target Criterion	Result	Pass / Fail / Comment
Experienced sampling team used	Yes	Yes	Pass
Sampling devices and equipment set out in sampling plan were used (refer Section 2.7).	Yes	Yes	Pass
Critical locations in sampling plan, sampled (refer Section 2.7).	Yes	Yes	Pass
Critical samples in sampling plan, collected (refer Section 2.7).	Yes	Yes	Pass
Completed field and calibration logs attached	Yes	Yes	Pass
Completed chain of custody attached	Yes	Yes	Pass
Laboratory	Target Criterion	Result	Pass / Fail / Comment
Complete sample receipt advice and chain of custody attached	Yes	Yes	Pass
Critical samples identified in sampling plan, analysed	Yes	Yes	Pass
Analysis undertaken addresses COPC in sampling plan (refer Section 2.7)	Yes	Yes	Pass
Analytical methods reported in laboratory documentation and appropriate limit of reporting used	Yes	Yes	Pass
Sample holding times met (refer Section 2.7)	Yes	Yes	Pass

Comparability

Laboratory Considerations	Target Criterion	Result	Pass / Fail / Comment
Same sampling team used for all work.	Yes	Yes	Pass
Weather conditions suitable for sampling.	Yes	Yes	Pass
Same sample types collected and preserved in same way (refer Section 2.7).	Yes	Yes	Pass
Relevant samples stored in insulated containers and chilled (refer Section 2.7).	Yes	Yes	Pass
Laboratory Considerations	Target Criterion	Result	Pass / Fail / Comment
Same laboratory used for all analysis (refer Section 2.7).	Yes	Yes	Pass
Comparable methods if different laboratories used Refer Section 2.7).	Not applicable	N/A	N/A
Comparable limits of reporting if different laboratories used.	Not applicable	N/A	N/A
Comparable units of measure if different laboratories have been used (refer Section 2.7).	Not applicable	N/A	N/A

Representativeness							
Field Considerations	Target Criterion	Result	Pass / Fail / Comment				
Media identified in sampling plan, sampled (refer Section 2.7).	Yes	Yes	Pass				
Samples required by sampling plan, collected (refer Section 2.7).	Yes	Yes	Pass				
Laboratory Considerations	Target Criterion	Result	Pass / Fail / Comment				
Samples identified in sampling plan, analysed.	Yes	Yes	Pass				

Precision			
Field Considerations	Target Criterion	Result	Pass / Fail / Comment
Minimum 5% duplicates and triplicates collected and analysed (refer Section 2.5).	Yes	Yes	Comment – A duplicate sample was collected; however a triplicate sample was not. Sampling was undertaken using industry accepted procedures. Laboratory analysis was undertaken by reputable NATA accredited environmental laboratories. Analytical results were within expected ranges based on site history, field observations and experience on comparable projects. Performance against this DQI is considered adequate.
Minimum 10% duplicates and triplicates collected and analysed where PFAS is a contaminant of concern (refer Section 2.5.	N/A	N/A	N/A
RPD unlimited where detected concentrations are <10 times the limit of reporting.	Yes	Yes	Pass for duplicate sample
RPD within 50% where detected concentrations are 10-20 times the limit of reporting.	Yes	Yes	Pass for duplicate sample
RPD within 30% where detected concentrations are >20 times the limit of reporting.	Yes	Yes	Pass for duplicate sample
Laboratory Considerations	Target Criterion	Result	Pass / Fail / Comment
All laboratory duplicate RPDs within laboratory acceptance criteria (refer Section 2.5).	Yes	Yes	Pass
Bias (Accuracy)			
Field Considerations	Target Criterion	Result	Pass / Fail / Comment
Trip blank analyte results less than limit of reporting (refer Section 2.5).	Yes	Yes	Pass
Trip spike analyte results less between 60% and 140% (refer Section 2.5).	Yes	Yes	Pass
Rinsate blank analyte results less than limit of reporting (refer Section 2.5).	Yes	Yes	Pass
Field (PFAS) blank analyte results less than limit of reporting (refer Section 2.5).	N/A	N/A	N/A
Laboratory Considerations	Target Criterion	Result	Pass / Fail / Comment
Laboratory method blank results within laboratory acceptance limits (refer Section 2.5).	Yes	Yes	Pass
Laboratory control sample results within laboratory acceptance limits (refer Section 2.5).	Yes	Yes	Pass

alliance

Laboratory spike sample results within laboratory acceptance limits.	Yes	Yes	Pass
--	-----	-----	------

APPENDIX D – Calibration Records

Multi Parameter Water Meter

Instrument YSI Quatro Pro Plus Serial No. 15E101199

ltem	Test	Pass	Comments
Battery	Charge Condition	1	
	Fuses	✓	
	Capacity	 Image: A set of the	
Switch/keypad	Operation	\checkmark	
Display	Intensity	✓	
	Operation	\checkmark	
WOOTWARD PROVIDED AND A STREET BOOK AND A	(segments)		
Grill Filter	Condition	✓	
	Seal	✓	
PCB	Condition	\checkmark	
Connectors	Condition	✓	
Sensor	1. pH	×	
	2. mV	\checkmark	
	3. EC	\checkmark	
	4. D.O	✓	
	5. Temp	 Image: A start of the start of	
Alarms	Beeper		
	Settings	1	
Software	Version		
Data logger	Operation		
Download	Operation		
Other tests:			

Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

Sensor	Serial no	Standard Solutions	Certified	Solution Bottle Number	Instrument Reading
1. pH 7.00		pH 7.00		381241	pH 7.00
2. pH 4.00		pH 4.00		389384	pH 4.00
3. mV		242.2mV		387761/385070	242.2mV
4. EC		2.76mS		385041	2.763mS
5. D.O		0.00%		371864	-0.1%
6. Temp		18.8°C		MultiTherm	19.0°C

Calibrated by:

Lauren Soutar

Calibration date: 20/07/2022

Next calibration due: 19/08/2022 20/7/22

۰.

Air-Met Scientific Pty Ltd

1300 137 067

Oil / Water Interface Meter

Instrument	Geotech Interface	Meter (30M)
Serial No.	4254	

ltem	Test	Pass	Comments
Battery	Compartment	4	
	Capacity	\checkmark	(1) A second s second second second second s second second s second second se
	· · · · · · · · · · · · · · · · · · ·		
			a second a second second second second second second second second second second second second second second s
Probe	Cleaned/Decon.	· · · · · · · · · · · · · · · · · · ·	
	Operation	1	
	·······		and the second second second second second second second second second second second second second second second
Connectors	Condition	\checkmark	· · · · · · · · · · · · · · · · · · ·
		\checkmark	and the second second second second second second second second second second second second second second second
Tape Check	Cleaned		
Connectors	Checked for cuts	i dan san sa sa sa sa sa sa sa sa sa sa sa sa sa	
Instrument Test	At surface level	· · · · · · · · · · · · · · · · · · ·	and a second second second second second second second second second second second second second second second
		•	and the second second second second second second second second second second second second second second second
			and the second second second second second second second second second second second second second second second
			and the second second second second second second second second second second second second second second second
			······································
			and the second second second second second second second second second second second second second second second

Certificate of Calibration

This is to certify that the above instrument has been cleaned and tested.

Calibrated by:Dom TaCalibration date:18/07/2022Next calibration due:16/09/2022

APPENDIX E – Field Records (Water)

Alliance Geotechnical Pty Ltd

Your On-Site Geotechnical & Environmental Specialists

GROUNDWATER FIELD DATA SHEET

Project N	umber:	1.4	177	1	Well ID:	BH 1		to all the second
Project N	ame: A	the good	1.1		Sampler	(s): 5-5		
Address:	46	Bussones Z	2. Xlore	Jore 1	Date:	27/07/2	2	
	ofue)					
vven St	atus		VEO /) visible.		
wonument dai	naged:		YES		vveii iL	VISIDIE:		YES INO INA
	asing:		YES/	NOT N/A	Cap or	PVC casing:		(TESY NO / N/A
Casing Diame	ter:				VVell H	eadspace PID	(ppm)	
NQMID					IPID	_	21	1100
PID ID		210.			Sampl	ing Equipment	text	state part
fotal well dep	th:	512	mBTOC					
Depth to wate	r before pump	o install: 0*5	0 mBTOC					
Depth to wate	r after pump i	nstall:	mBTOC					
Pump intake c	lepth:	112	mBTOC					
Casing above	ground:	NI	m	BTOC	Weathe	er Conditior	ns:	
					Temp	erature 15	-20 2	0-25 □
						25	5-30 □ >	30 🗆
				59				
					Cl	ear 🔀 🛛 F	Partly cloud	y 🗆 Overcast 🛛 🗆
					Ca	alm 🗆 🛛 S	Slight breez	e 🔀 Moderate breeze 🛛
						V	Vindy	
		a hu		a a serie de la composición de la composición de la composición de la composición de la composición de la compo Composición de la composición de la comp	F	ine💢 S	howers	🗆 Rain 🗆
		Note: 50mm inte	rnal diameter	nine = 1.96 I / n			And a state of the	
				pipe - 1.50 L/I	n. All meası	irements below	v well collar	
Water	Quality De	tails:		pipe - 1.50 E/	n. All meası	irements below	v well collar	
Water Time	Quality De	etails:	DO	EC	n. All measu	rements below	v well collar	
Water Time am / pm	Quality De	etails: Depth to water	DO (ppm)	EC (μS cm ⁻¹)	pH	rements below Redox (mV)	Temp	Comments (colour,
Water Time am / pm	Quality De Vol (L)	etails: Depth to water (mBTOC)	DO (ppm)	EC (μS cm ⁻¹)	pH	Redox (mV)	Temp (°C)	Comments (colour, turbidity, sediment, odour,
Water Time am / pm	Quality De Vol (L)	etails: Depth to water (mBTOC)	DO (ppm)	EC (μS cm ⁻¹)	pH	Redox (mV)	Temp (°C)	Comments (colour, turbidity, sediment, odour, sheen, thickness)
Water Time am / pm	Quality De Vol (L) Well purge & acceptance of	etails: Depth to water (mBTOC) stabilisation criteria	DO (ppm) ±10% <i></i> 4・7ち	EC (μS cm ⁻¹) ±3%	pH ±0.1	Redox (mV) ±10%	Temp (°C) ±10%	Comments (colour, turbidity, sediment, odour, sheen, thickness)
Water Time am / pm	Quality De Vol (L) Well purge & acceptance of	etails: Depth to water (mBTOC) estabilisation criteria	DO (ppm) ±10% #•7\$ #775	EC (μS cm ⁻¹) ±3% 433.9	n. All measu pH ±0.1 7 - סן	Redox (mV) ±10%	Temp (°C) ±10%	Comments (colour, turbidity, sediment, odour, sheen, thickness)
Water Time am / pm 07:47 ↓2	Quality De Vol (L) Well purge & acceptance	etails: Depth to water (mBTOC)	DO (ppm) ±10% #•7\$ #775 [•24]	EC (μS cm ⁻¹) ±3% 433.9 4/30.5	n. All measu pH ±0.1 7.01 7.03	Redox (mV) ±10% - 49-0 - 98-8	vell collar Temp (°C) ±10% 14 · 6 14 · 8	Comments (colour, turbidity, sediment, odour, sheen, thickness) Barron, hatid Rungant organ
Water Time am / pm 09:47 42 +4	Quality De Vol (L) Well purge & acceptance of 	etails: Depth to water (mBTOC) stabilisation criteria	DO (ppm) ±10% <u>4.75</u> <u>4.75</u> <u>4.75</u> <u>1.24</u> 0.23	EC (μS cm ⁻¹) ±3% 433.9 4/30.5 424.1	n. All measu pH ±0.1 7.01 7.03 7.05	Redox (mV) ±10% - 49.0 - 98.8 - 119.2	x well collar Temp (°C) ±10% 14 · 6 14 · 8 14 · 9	Comments (colour, turbidity, sediment, odour, sheen, thickness) Barn, habid, fungent organ, odour, Ratzlee

+8	2.0	-	-	411.4	7.04	-137-6	14-0	
+10	2.5	0.60	_	410.5	7.04	-140.4	14.5	
					- 101-2 1			
Sample ID: BH1 Dup. Sample ID: QAQC /								

03

D

420.3

7.05

Trip Sample ID:

Sangle

F

9

-129.6 15.D

taken

spende

Metals Sample Field Filtered: (/es/no

1.5

+6